The Web Service Interface

This chapter describes the architecture of the AGS Web service and how the Java and Perl
APls accessit. It aso explains the message syntax for sending requests directly to the AGS
Web service.

This chapter contains the following sections:

The Web Service Architecture starting on page 79
Accessing the WSDL for the Web Service starting on page 82
A Brief Description of SOAP starting on page 82
Syntax for AGS Requests and Responses starting on page 83

The Web Service Architecture

The Java and Perl APIs both provide access to the Web service with the

creat eWebSer vi ceSer ver method. When you send a request to such a Web service Server
object, the details explained in this chapter are taken care of behind the scenes. The execut e
method in these cases deconstructs the information in the Request object, trandates it into an
HTTP message that conforms to the SOAP protocol, and sends it to the URL specified when
the Server object was created. When the AGS server receives such arequest, it reconstructs the
Request object and sendsit to a pooled AGS process for execution. When the request is
processed, the Web service deconstructs the Response object and reformats the information
into an HTTP response that also conforms to the SOAP protocol. This processis shown in
Figure 4.1 on page 80.

instead of using the Java or Perl APIsto access the Web service, you may wish to use WSDL—
capable tools to construct your own requests and send them directly to the Web Service. The
information in this chapter enables you to do that.

The following figure shows how the Java and Perl APIs provide a connection to the AGS Web
service, aswell as showing adirect connection.

Adobe Graphics Server API Reference Nov 13, 2002

4 The Web Service Interface
The Web Service Architecture
FIGURE 4.1 Communicating with the AGS Web service

Client System

h
Java code Perl code Other code
using using using
Java API Perl API Web Service
Interface

o A

1 Request 8 Response 1 Request 8 Response
object object object object

2 HTTP 7 HTTP 2 HTTP 7 HTTP 2 HTTP 7 HTTP
request response request response request response

¢ ¢ ¢

AGS Server
|
3 service
invoked

Servlet Engine
6 service
responds

' Server pool
Web service server #1
4 Request server #2
—— object — B
Java SDK 5 Response server #3
-+ — server #4

object

The following steps explain Figure 4.1 in detail. The step numbers correspond to the numbers
shown in the figure.

1. Creating a Server and a Request object — This step applies only when using the Java or
Perl API to contact the Web service.

In your Java or Perl code, you create a Web service Server object by calling the

cr eat eVebSer vi ceSer ver method. This method takes one argument, the URL of the AGS
Server. This URL is determined when you install AGS. You can create a secure connection
to the AGS Server by supplying a URL that begins with https://. If you are using an LDAP
server, you must also supply a user name and password in the request.

The cr eat eV¢bSer vi ceSer ver method returns a Ser ver object in Javaand a

Ser ver VbSer vi ce object in Perl. You then create a Request object and put the desired
information into it. You then call the execut e method of the Server object, passing in the
Request object as a parameter.

80 Nov 13, 2002 Adobe Graphics Server AP| Reference

The Web Service Interface 4
The Web Service Architecture

2. Creating a Web service request — The implementation of the Java and Perl APIs
transparently convertsthe Request object you passto the server's execut e method into an
appropriately constructed Web service request.

If you are not using the Java or Perl APIs, but are using some other coding mechanism to
access the AGS server, you must construct this Web service request yourself. The request
must contain all the information necessary for the Web service to process your request.
Chapter 4, “The Web Service Interface,” describes the contents of such arequest, and
contains all the information you need to construct one. You can also discover this
information by asking AGS for its WSDL description.

3. Transmitting the Web service request — If you are using the Java or Perl APl as an entry
point, the APl implementation automatically routes the request to the appropriate host and
port number on which AGSis listening, based on the URL you provided when you created
the Server object.

4. Executing the Web service request — When the Web service receives the request, it checks
the header for which server method to invoke (execut e in this case) and passes the request
to an AGS process to execute.

5. Receiving a response from the AGS process — When the AGS process is finished
processing the request, it returns a Response object to the Web service. If you specified a
result location, the result files reside on the AGS server’s system; otherwise, result content
isreturned in the response.

6. Creating a response for the client — The Web service constructs an appropriate response.

7. Transmitting the response — The Web service sends the response back to the client. The
error code in the response indicates whether the request succeeded or failed.

If the request succeeded, the response contains log information and possibly result content.
The structure and content of such aresponse is described in Chapter 4.

If the request failed, error information isincluded in the response in place of results. The
structure and content of such aresponseis described in Chapter 4.

If your entry point was the Java or Perl API, you do not need to be concerned about the
content of this response, asthe APl processesit for you. If you have used other code as
your entry point, however, you are responsible for parsing this response yourself.

8. Returning a Response object — If your entry point was the Java or Perl API, the
implementation of the Server object’s execut e method extracts the pertinent information
from the Web service'sresponse and putsit into an APl Response object, which isreturned
from the method. This step does not apply if your entry point is from other code.

In summary, the basic mechanism of encoding AGS request information in an HTTP/SOAP
message is identical no matter whether you invoke AGS with the Java API, the Perl API, or
from other code. The main differenceis that the Java and Perl APIs completely hide the fact
that an HTTP/SOAP request/response cycle isinvolved.

Adobe Graphics Server API Reference Nov 13, 2002 81

4 The Web Service Interface
Accessing the WSDL for the Web Service

Accessing the WSDL for the Web Service

If you choose to construct your own HTTP requests for the AGS Web service, you can access
its WSDL with the following URL:

http://localhost:8019/altercast/AlterCast
where localhost is the name of the system on which the Web serviceisinstalled.

Thislink takes you to the Adobe Server Web Services page. From here, you can access the
service description (the WDSL). There are aso two other links that show you the request and
response syntax for a get version and an execute request.

The AGS SDK includes C# and .NET examples that demonstrate how to call the AGS Web
servicedirectly, using the WSDL. Seethe directory sanpl es/ api / NET wherever you install the
SDK.

A Brief Description of SOAP

The AGS request information in arequest to the Web service is enclosed in a SOAP envel ope.
SOAP (Simple Object Access Protocol) defines a uniform way to pass XML—encoded data
and to perform remote procedure calls using HTTP. The protocol defines three things:

o The SOAP envelope — A framework for describing where to deliver a message and how to
processit. The SOAP envelopeisthe top-evel element of any XML document that
represents a SOAP message.

« The SOAP encoding — A set of encoding rulesto express instances of application—defined
datatypes. This encoding includes information about which parameters are allowed in the
message, what each parameter’stypeis, and how the parameters can be used together. AGS
does not use this encoding.

o SOAP transmission over HTTP — A convention for representing remote procedure calls
and responses. While the SOAP protocol can potentially be used in combination with a
variety of other protocols, the implementation of the AGS Web service uses it with HTTP,
A SOAP request can be transmitted over HTTR, typically within a POST request. The
reguest is given the mediatypet ext / xnt or multipart MIME and its body contains the
SOAP envelope. Optionally, the request may contain a header called SOAPAct i on that
indicates the intent of the request.

The AGS Web service fully supports the specifications for the SOAP envelope and SOAP
transmission over HTTP,

For more information about SOAP, see http://www.w3.org and follow the link for “Web
Services.

82 Nov 13, 2002 Adobe Graphics Server API Reference

Requests for AGS Processing The Web Service Interface 4
Syntax for AGS Requests and Responses

Syntax for AGS Requests and Responses

The examples in this section show prototypical syntax for requests and responses. Valuesin
red italics are placeholders for actual valuesin areal request or response. You can get this
information from the WSDL, but it is presented here to provide context for some additional
information.

Requests for AGS Processing

The HTTP request that expresses an AGS request consists of
« A standard HTTP PCST method.

« A specia header called SOAPAct i on with avalue of " Execut e" . This causesthe AGS Web
service to invoke the execut e method.

« A SOAP envelope that contains the AGS request information.

The following code shows afull HTTP request that expresses an AGS reguest for processing.
All itemsin (red) italics in the following example are placeholders for actual values you
supply. All string values in the request should be properly encoded using their Unicode codes,
asrequired by XML.

Adobe Graphics Server API Reference Nov 13, 2002 83

84

The Web Service Interface
Syntax for AGS Requests and Responses

ExampLE 4.1 An HTTP/SOAP request for AGS processing
1 POST /altercast/AterCast HITP/ 1.1

Requests for AGS Processing

2 Host: | ocal host

3 Cont ent - Type: text/xm; charset=utf-8

4 Content-Length: |ength

5 SQAPAction: "http://ns. adobe. com al t ercast/ 1. 5/ Execut e"
6

7 <?xm version="1.0" encodi ng="utf-8"?>

8 <soap: Envel ope

9 xm ns: xsi ="http://ww w3. or g/ 2001/ XM_Schena- i nst ance”
10 xm ns: xsd="ht t p: / / waw. wW3. or g/ 2001/ XM_Schena"

11 xm ns: soap="htt p: // schemas. xm soap. or g/ soap/ envel ope/ " >
12 <soap: Body>

13 <request xm ns="http://ns. adobe. conl al tercast/1.5/">
14 <commands>st r i ng</ conmands>

15 <fil es>

16 <file>

17 <name>st r i ng</ nane>

18 <dat a>base64Bi nar y</ dat a>

19 </file>

20 <file>

21 <name>st r i ng</ nane>

22 <dat a>base64Bi nar y</ dat a>

23 </file>

24 </fil es>

25 <vari abl es>

26 <vari abl e>

27 <name>st r i ng</ nane>

28 <val ue>st ri ng</ val ue>

29 </vari abl e>

30 <vari abl e>

31 <name>st r i ng</ nane>

32 <val ue>st ri ng</ val ue>

33 </vari abl e>

34 </vari abl es>

35 </ request >

36 </ soap: Body>

37 </ soap: Envel ope>

o Lines 1-5 contain the HTTP header information. Line 5 specifies the special SOAPAct i on

header.

The remaining lines define the SOAP envel ope that contains the AGS request information:

« Lines8-11 contain the standard SOAP attributes for the soap: Envel ope element.

o Line 13 startsthe AGS request portion of the body.

« Line 14 specifiesthe AGS commands for the request. The example shows how to specify
the commands as a string within the request body. This single line will be replaced by
multiple actual lines of text, depending on how many commands you need to specify inthe

request.

Nov 13, 2002

Adobe Graphics Server AP| Reference

Responses to Successful Processing The Web Service Interface
Syntax for AGS Requests and Responses

The basic requirement for acommand set isthat it be nested inside acommands € ement. When
submitting requests directly to the Web service, you need an additional command element,
nested inside the outer one and appropriately escaped for XML. All text within this internal
comrands element must also be escaped. The following code is an example of a short
commands string that would replace line 14 in an actual request.

<conmmands>
&t ; comrandsé> ;
& t;inmageSi ze w dt h=&guot ; 500" ; hei ght =" ; 300" ;/ > ;
&t ; / commandségt ;
</ commands>

« Linel5 startsthelist of input filesfor thisrequest. This element isfollowed by any number
of fil e elements, each one specifying one input file. This example shows two such files.
You specify the file data directly as a base-64 binary encoded string. For example, if the
following command is specified in the command set:

<l oadCont ent source="f| owner" >

thefi | es element should contains a corresponding element like this:
<file>
<name>f | ower </ nane>
<data>...etc...</data>
<filel>
As an alternative to specifying the input as a string, you can specify the input with an
attachment. The following URL describes the specification for including MIME
attachments in SOAP messages: http://www.w3.org/TR/SOA P-attachments.

o Line25 startsthe list of variablesfor this request. This element is followed by any number
of vari abl e elements, each one specifying asingle variable name/value pair. This datais
read into a content holder called “data” and is used for automatic variable replacement and
for explicit variable replacement with the appl yVari abl es command, if you do not
specify another source of input for the command.

Responses to Successful Processing

The HTTP request that expresses the response from an AGS request that was successfully
processed consists of :

« Anerror code — The Web service returns a 200 (OK) when the request was successfully
processed.

« Theresults of the processing — Results are enclosed in a SOAP envelope in the message
body that contains the AGS response information. Log messages generated during regquest
processing are aways returned. Result files are returned in the response if you did not
specify aresult location in the AGS request or otherwise save the results to the file system.

The following code shows the syntax for afull HTTP response that AGS sends after it
successfully processes arequest. All itemsin (red) italics in the following example are
placeholders for actual data values. Stringsin the response are appropriately escaped for
XML.

Adobe Graphics Server API Reference Nov 13, 2002 85

4 The Web Service Interface
Syntax for AGS Requests and Responses

ExampLE 4.2 An HTTP/SOAP response indicating successful AGS processing

© 000N O WN P

34
35

86

HTTP/ 1.0 200 K
Cont ent - Type: t ext / xm

<?xm version="1.0" encodi ng="utf-8"?>

<soap: Envel ope

Responses to Successful Processing

xm ns: xsi ="http://ww w3. or g/ 2001/ XM_Schena- i nst ance”
xm ns: xsd="ht t p: / / waw. wW3. or g/ 2001/ XM_Schena"
xm ns: soap="htt p: // schemas. xm soap. or g/ soap/ envel ope/ " >

<soap: Body>

<response xmns="http://ns. adobe. com al tercast/1.5/ ">

<files>
<file>

<name>st r i ng</ nane>

<wi dt h>i nt </ wi dt h>

<hei ght >i nt </ hei ght >
<type>stri ng</type>

<ext ensi on>st ri ng</ ext ensi on>
<dat a>base64Bi nar y</ dat a>

</file>
<file>

<name>st r i ng</ nane>

<wi dt h>i nt </ wi dt h>

<hei ght >i nt </ hei ght >
<type>stri ng</type>

<ext ensi on>st ri ng</ ext ensi on>

<dat a>base64Bi nar y</ dat a>

</file>
</files>
<l og>

<entry>string</entry>
<entry>string</entry>

</l og>
</ r esponse>
</ soap: Body>
</ soap: Envel ope>

Lines 1-2 contain standard HTTP header information.
Lines 5-8 contain the standard SOAP attributes for the soap: Envel ope element.

Line 10 starts the AGS response portion of the body.

Line 11 startsthelist of results. Thefi | es element isfollowed by any number of fil e
elements, each one specifying one result file. Besides the result contents, returned as a
base-64 binary encoded string, the result content’s name, MIME type, file extension, and

Nov 13, 2002

Adobe Graphics Server AP| Reference

Responses to Unsuccessful Processing The Web Service Interface

Syntax for AGS Requests and Responses

width and height in pixels are returned. The exact meaning of thisinformation is the same
asisexplained in the Java, Perl, and COM API chaptersin this guide.

If you included the input files as MIME attachments in your request, AGS returns any
results included in the response as MIME attachments al so.

If you specified aresult location in the request, result files are written to the Web service's
local file system and thefi | es element is omitted.

o Line?29 startsthelist of log messages related to this request. The | og element is followed
by any number of ent ry elements, each one specifying asingle log string that AGS
generated while processing the request. If no log messages were generated, the | og
element is omitted.

Responses to Unsuccessful Processing

The HTTP response that expresses the response from an AGS request that was unsuccessfully
processed consists of :

o Anerror code— The Web service returns a 500 (Internal Server Error) when the request
was not successfully processed.

o Error information — The error information is enclosed in a SOAP envelopein the message
body.

The following code shows the syntax for afull HTTP response that AGS sends when it failsto
successfully process arequest. All itemsin (red) italics in the following example are
placeholders for actual data values. Strings in the response are appropriately escaped for
XML.

ExampLE 4.3 An HTTP/SOAP response indicating an AGS processing failure

1 HITP/ 1.0 500 Internal Server Error

2 Content-Type: text/xm

3

4 <?xm version="1.0" encodi ng="utf-8"7?>

5 <soap: Envel ope

6 xm ns: soap="htt p://schenas. xm soap. or g/ soap/ envel ope/ " >

7 <soap: Body>

8 <soap: Faul t >

9 <f aul t code>soap: Server </ f aul t code>

10 <faul tstring>Coul d not handl e the request because reason
11 </faul tstring>

12 <detai | >

13 <log xm ns="http://ns. adobe. com al tercast/1.5/ ">

14 <entry>[NOTl CE] Starting AlterCast request.</entry>
15 <entry> BRROR Uhknown command ' commandNane' .
16 </entry>

17 </l og>

18 </detail >

19 </ soap: Faul t >

20 </ soap: Body>

21 </ soap: Envel ope>

Adobe Graphics Server API Reference Nov 13, 2002 87

The Web Service Interface Responses to Unsuccessful Processing

Syntax for AGS Requests and Responses

e Lines1-2 contain standard HT TP header information.
o Lines5-21 contain the SOAP body:

— Online9, thevalue of thef aul t code element is always either soap: Qi ent or
soap: Ser ver. Theformer indicatesthat the request the client sentisinvalid in someway.
The latter means the server failed to execute the request for some other reason.

— Lines 12-18 contain detailed information about the failure. The det ai | element is
followed by al og element that contains an ent ry element for each log message that
AGS generated while it was processing the request.

88 Nov 13, 2002 Adobe Graphics Server AP| Reference

The COM API

This chapter explains the details of the COM (Component Object Model) API for AGS.
General information about the underlying APl model and other information that appliesto all
of the AGS APIsis contained in Chapter 1, “The Adobe Graphics Server Interfaces.”

NoTe: The AGS COM API is supported only on Windows platforms.

This chapter contains the following sections. Within each section that details the contents of a
COM interface, the methods are presented a phabetically:

An Overview of the COM API starting on page 89

The IACServer Interface starting on page 96

The IACRequest Interface starting on page 101
The IACResponse Interface starting on page 108
The IACData Interface starting on page 109
The IACRecord Interface starting on page 110
ThelACLog Interface starting on page 112
Handling Errors starting on page 113

An Overview of the COM API

NoTe: Thissectionisnot ageneral COM tutorial. We assume that if you are using this
chapter, you already understand what COM is and have at |east a basic working
knowledge of how to use it.

Simply put, COM is amechanism that allows you to build reusable binary components, and to
exercise code written in one language from code written in another language. For example, the
AGS COM library iswritten in C++, but you can access its methods from a variety of
interpretive programming languages, such as Visua Basic, VBScript, JavaScript, and Perl, as
well as some compiled languages, such as C and C++. COM provides a neutral
language-independent binding between the code you write and the AGS code.

Adobe Graphics Server API Reference Nov 13, 2002

90

The COM API
An Overview of the COM API

AGS COM DLL Written in C++

Provides binding for different languages
and compilers

COM+ also provides object pooling,
constructor strings, security, etc.

COM or COM+

Can be written in Visual Basic, VBScript, JavaScript,
Perl, C, or C++

Can access methods in the AlterCastCOM DLL, using
the mechanisms provided by COM

Your code

The AGS COM API is supported only on Microsoft® Windows platforms: Windows NT® and
Windows 2000. You can invoke the object constructors and APl methods on either the local
system or on aremote system, depending on how you have installed and configured AGS and
on what platform(s) you are operating.

This chapter focuses on using the COM API from interpretive languages, but much of the
information presented here is directly generalizable to the compiled languages as well. The
differenceslie in the actual method signatures presented by the AGS DLL.

Terms Used in This Chapter

Throughout this chapter, the following terms are used as follows:

COM The version of COM that comes with Windows NT. Thisterm is also sometimes
used as ageneric umbrellaterm for both COM and COM+. The context should make
it clear which meaning is meant.

COM+ The version of COM that comes with Windows 2000. COM+ contains al the
functionality of COM and some additional capabilities — object pooling, security,
and constructor strings, to name a few.

When you install AGS with its COM SDK option on a Windows 2000 system, the
installer automatically createsa COM+ application configured for pooling. However,
you are not bound to using the COM + features on these platforms— you can ssimply
use COM instead of COM+.

COM SDK All the necessary files and executables that come with COM. This SDK is
automatically installed with Windows NT.

COM+ SDK All the necessary files and executables that come with COM+. This SDK is
automatically installed with Windows 2000.

COM server A generic term to cover a system on which either the COM or COM+ SDK has been
installed.

AGS COM API A collection of COM interfaces that define the API to AGS through both COM and
COM+. When the immediate context makes it clear, this is sometimes shortened to
the COM API.

Nov 13, 2002 Adobe Graphics Server AP| Reference

The COM API
An Overview of the COM API

The AGS COM library

COM+ application

implementation for the AGS COM API.

Thefilecaled Al t er Cast OOM dI | which defines the interface and provides the

A group of related COM components that you can configure individually and as a

whole, and that operate together in the COM+ environment. You can see the COM+

applications on a system from the control panel

(Start > Settings > Control Panel) under Administrative Tools
(Component Services> Computers>My Computer > COM+ Applications).

The API Interfaces

Conceptualy, you can group the methods in the AGS COM API into three main groups:

Servers — Methods you use to create a connection to an AGS server and to send requests

viathis connection.

Requests — Methods you use to construct AGS requests.

Responses — Methods you use to obtain the results of a processed AGS request that you

have sent.

The AGS COM API consists of six interfaces and their corresponding objects, as shown in the
following table:

TABLE 5.1 A summary of the COM API
Conceptual Area COM Interface COM Object Methods
AGS Servers | ACSer ver ACSer ver execute, getVersion
addFont Fol der
set LogLevel , SetlLogFile
AGS Requests | ACRequest ACRequest addDat a, addFile, addString
addVari abl e
set Commands, set CommandsFil e
set CommandsFi | eOnhSer ver
set Resul t Locat i on
set Result Qverwite
Results of Processed Requests | ACResponse ACResponse get Log, getData
I ACLog ACLog count, item
| ACDat a ACDat a count, item
| ACRecord ACRecord get Data, get Nane

get Ext ensi on, get Type
get Hei ght, getWdth

The only two objects in the above list that you need to create instances of are the ACSer ver
and ACRequest objects— all the response—related objects are created by AGS when it finishes
processing arequest. The exact syntax for creating these objects varies, depending on the
language you use to exercise the AGS COM API. All languages, however, give you the option
of specifying a particular machine on which the object is created. There are some restrictions

Adobe Graphics Server API Reference

Nov 13, 2002

91

5 The COM API
An Overview of the COM API

on where you can create the Server and Request objects, depending on the system
configuration you are using. These restrictions are explained in Table 5.3 on page 94.

The AGS SDK includes samples that demonstrate how to use the methods discussed in this
chapter. There are samples that use the COM API from C++, JavaScript, and VBScript. See
the directory sanpl es/ api / comwherever you install the SDK.

General Order of Method Use
The general order in which you use the methods in the COM API isasfollows:

1. Youcreatean ACSer ver object. Exactly how you do thisis determined by the programming
language you are using.

2. You create a ACRequest object. Exactly how you do thisis determined by the programming
language you are using. You then use the Request object’s methods to populate the request.

NoTe: Stepsland 2 areinterchangeable — it doesn’t matter whether you create the server or
the request first.

3. You send the request to the server. You pass your ACRequest object to the ACSer ver
object’s execut e method.

4. You get the results of the processing done in response to the request. When the execut e
method terminates, it returns an ACResponse object. You extract the collection of results
and the collection of log messages from this object, and then extract individual results or
messages from these collections.

Since the Server object persists after it handles a request, you can repeat steps 2 - 4 any
number of times, using the same Server object.

Local and Remote Execution

The system on which you create the ACSer ver object determines the system on which AGS
executes the requests you send to this server. The nature of COM allows you, under certain
circumstances, to create the Server object on one system and your request objectson a
different system, one or both of which may not be the same system on which your program
that creates these abjects is running. The following sections explain all of this.

92 Nov 13, 2002 Adobe Graphics Server API Reference

The COM API
An Overview of the COM API

Local Execution

Table 5.2 explains the system configuration needed to execute AGS requests on the same
system on which your program runs.

TABLE 5.2 Using the AGS COM API for local execution of requests

Windows
platform Requirements for using the AGS COM API

NT Installation requirements:
* The AGS COM library isregistered with Windows. The AGS installer does this
for you. No further setup or configuration is necessary.
Execution requirements:
» Create all of your ACSer ver and ACRequest objects on the local system.

2000 Installation requirements:

» AGSisinstalled with the COM SDK option on the local system.

* The AGS COM library is registered with Windows. The AGS installer does this
for you.

* You can use either COM or COM+ on this platform. If you wishto use COM+, a
COM+ application for AGS must exist and be appropriately configured. The AGS
installer does this automatically for you when you install on Windows 2000. You
can, however, change the configuration of the application onceit is created.

Execution requirements:
» Create all of your ACSer ver and ACRequest objects on the local system.

Remote Execution

If you plan to run any part of AGS on a system other than the one on which your program runs,
some restrictions apply. You may want to run your program on your local system, but create
your request objects on another system, because that iswhere al the files you will add to your
requests exist. Or you may want to run the program locally but run the AGS server on another
system, for avariety of reasons. Your client system may not have sufficient hardware resources
to run AGS. You may have many client systems, not all of which have AGSinstalled or
licensed. The client and AGS may both be resource intensive, causing them to compete for
resources unless run on separate systems.

Once you introduce remote execution, you introduce two sets of variables: the operating
system on the local and remote machines, and whether you are using COM or COM+ on those
machines. The restrictions that apply to remote execution can best be explained in the context
of whether you are using COM or COM+. Table 5.3 isorganized on this principal. When using
thistable, keep in mind the following restrictions:

« You can use COM on both Windows NT and Windows 2000.
« You can use COM+ only on Windows 2000.

Adobe Graphics Server API Reference Nov 13, 2002

93

94

The COM API
An Overview of the COM API

In Table 5.3

o TheLocal column identifies whether COM or COM+ is being used on the local machine.
Thisis the machine on which your program that exercises the AGS COM API is running.

« The Remote column identifies whether COM or COM+ is being used on the remote
machine(s).

TABLE 5.3 Using the AGS COM API for remote execution of requests

Local Remote Execution requirements and capabilities

COM D COM All ACServer and ACRequest objects must be created on a single remote

machine. No objects can be created locally.
COM+ D COM

COM D COM+ All ACServer and ACRequest objects must be created on one or more
remote machines. This means you could create an ACSer ver object on
one machine and an ACRequest object on a different machine. However,
no objects can be created on the local machine.

COM+ D COM+ You can create any combination of ACSer ver and ACRequest objects, all
remotely on the same machine, all remotely on multiple machines, or
some locally and some remotely on one or more machines. This scenario
obvioudly gives you the most flexihility.

Method Signatures

The COM API can be used from a variety of languages, both interpretive and compiled.
Because the terminology, syntax, and built—in types of these languages vary, we have chosen
to use particular terms and typesin a general sense.

We use the term method to cover C functions, C++ methods, Perl subroutines, etc. The
method prototypes given in the synopsis sectionsin this chapter are presented in ageneric
form that looks much like Visual Basic, and uses generic names for common built—in types.
The following table shows the type equivalency between this generic type and the actual types
in the supported languages.

Nov 13, 2002 Adobe Graphics Server AP| Reference

