
Adobe Graphics Server API Reference Nov 13, 2002 79

4 The Web Service Interface

This chapter describes the architecture of the AGS Web service and how the Java and Perl
APIs access it. It also explains the message syntax for sending requests directly to the AGS
Web service.

This chapter contains the following sections:

The Web Service Architecture

The Java and Perl APIs both provide access to the Web service with the
createWebServiceServer method. When you send a request to such a Web service Server
object, the details explained in this chapter are taken care of behind the scenes. The execute
method in these cases deconstructs the information in the Request object, translates it into an
HTTP message that conforms to the SOAP protocol, and sends it to the URL specified when
the Server object was created. When the AGS server receives such a request, it reconstructs the
Request object and sends it to a pooled AGS process for execution. When the request is
processed, the Web service deconstructs the Response object and reformats the information
into an HTTP response that also conforms to the SOAP protocol. This process is shown in
Figure 4.1 on page 80.

instead of using the Java or Perl APIs to access the Web service, you may wish to use WSDL–
capable tools to construct your own requests and send them directly to the Web Service. The
information in this chapter enables you to do that.

The following figure shows how the Java and Perl APIs provide a connection to the AGS Web
service, as well as showing a direct connection.

The Web Service Architecture starting on page 79

Accessing the WSDL for the Web Service starting on page 82

A Brief Description of SOAP starting on page 82

Syntax for AGS Requests and Responses starting on page 83

The Web Service Interface
The Web Service Architecture4

80 Nov 13, 2002 Adobe Graphics Server API Reference

FIGURE 4.1 Communicating with the AGS Web service

The following steps explain Figure 4.1 in detail. The step numbers correspond to the numbers
shown in the figure.

1. Creating a Server and a Request object — This step applies only when using the Java or
Perl API to contact the Web service.

In your Java or Perl code, you create a Web service Server object by calling the
createWebServiceServermethod. This method takes one argument, the URL of the AGS
Server. This URL is determined when you install AGS. You can create a secure connection
to the AGS Server by supplying a URL that begins with https://. If you are using an LDAP
server, you must also supply a user name and password in the request.

The createWebServiceServer method returns a Server object in Java and a
ServerWebService object in Perl. You then create a Request object and put the desired
information into it. You then call the execute method of the Server object, passing in the
Request object as a parameter.

HTTP / SOAP

Perl code
using

Perl API

Other code
using

Web Service
Interface

Client System

Web service server #1
server #2
server #3
server #4

Server pool

1 Request
object

1 Request
object

2 HTTP
request

2 HTTP
request

2 HTTP
request

3 service
invoked

4 Request
object

5 Response
object

6 service
responds

7 HTTP
response

7 HTTP
response

7 HTTP
response

8 Response
object

8 Response
object

Servlet Engine

Java SDK

Java code
using

Java API

AGS Server

Adobe Graphics Server API Reference Nov 13, 2002 81

The Web Service Interface
The Web Service Architecture 4

2. Creating a Web service request — The implementation of the Java and Perl APIs
transparently converts the Request object you pass to the server’s executemethod into an
appropriately constructed Web service request.

If you are not using the Java or Perl APIs, but are using some other coding mechanism to
access the AGS server, you must construct this Web service request yourself. The request
must contain all the information necessary for the Web service to process your request.
Chapter 4, “The Web Service Interface,” describes the contents of such a request, and
contains all the information you need to construct one. You can also discover this
information by asking AGS for its WSDL description.

3. Transmitting the Web service request — If you are using the Java or Perl API as an entry
point, the API implementation automatically routes the request to the appropriate host and
port number on which AGS is listening, based on the URL you provided when you created
the Server object.

4. Executing the Web service request — When the Web service receives the request, it checks
the header for which server method to invoke (execute in this case) and passes the request
to an AGS process to execute.

5. Receiving a response from the AGS process — When the AGS process is finished
processing the request, it returns a Response object to the Web service. If you specified a
result location, the result files reside on the AGS server’s system; otherwise, result content
is returned in the response.

6. Creating a response for the client — The Web service constructs an appropriate response.

7. Transmitting the response — The Web service sends the response back to the client. The
error code in the response indicates whether the request succeeded or failed.

If the request succeeded, the response contains log information and possibly result content.
The structure and content of such a response is described in Chapter 4.

If the request failed, error information is included in the response in place of results. The
structure and content of such a response is described in Chapter 4.

If your entry point was the Java or Perl API, you do not need to be concerned about the
content of this response, as the API processes it for you. If you have used other code as
your entry point, however, you are responsible for parsing this response yourself.

8. Returning a Response object — If your entry point was the Java or Perl API, the
implementation of the Server object’s execute method extracts the pertinent information
from the Web service’s response and puts it into an API Response object, which is returned
from the method. This step does not apply if your entry point is from other code.

In summary, the basic mechanism of encoding AGS request information in an HTTP/SOAP
message is identical no matter whether you invoke AGS with the Java API, the Perl API, or
from other code. The main difference is that the Java and Perl APIs completely hide the fact
that an HTTP/SOAP request/response cycle is involved.

The Web Service Interface
Accessing the WSDL for the Web Service4

82 Nov 13, 2002 Adobe Graphics Server API Reference

Accessing the WSDL for the Web Service

If you choose to construct your own HTTP requests for the AGS Web service, you can access
its WSDL with the following URL:

http://localhost:8019/altercast/AlterCast

where localhost is the name of the system on which the Web service is installed.

This link takes you to the Adobe Server Web Services page. From here, you can access the
service description (the WDSL). There are also two other links that show you the request and
response syntax for a get version and an execute request.

The AGS SDK includes C# and .NET examples that demonstrate how to call the AGS Web
service directly, using the WSDL. See the directory samples/api/NETwherever you install the
SDK.

A Brief Description of SOAP

The AGS request information in a request to the Web service is enclosed in a SOAP envelope.
SOAP (Simple Object Access Protocol) defines a uniform way to pass XML–encoded data
and to perform remote procedure calls using HTTP. The protocol defines three things:

● The SOAP envelope — A framework for describing where to deliver a message and how to
process it. The SOAP envelope is the top–level element of any XML document that
represents a SOAP message.

● The SOAP encoding — A set of encoding rules to express instances of application–defined
data types. This encoding includes information about which parameters are allowed in the
message, what each parameter’s type is, and how the parameters can be used together. AGS
does not use this encoding.

● SOAP transmission over HTTP — A convention for representing remote procedure calls
and responses. While the SOAP protocol can potentially be used in combination with a
variety of other protocols, the implementation of the AGS Web service uses it with HTTP.
A SOAP request can be transmitted over HTTP, typically within a POST request. The
request is given the media type text/xml or multipart MIME and its body contains the
SOAP envelope. Optionally, the request may contain a header called SOAPAction that
indicates the intent of the request.

The AGS Web service fully supports the specifications for the SOAP envelope and SOAP
transmission over HTTP.

For more information about SOAP, see http://www.w3.org and follow the link for “Web
Services”.

Adobe Graphics Server API Reference Nov 13, 2002 83

Requests for AGS Processing The Web Service Interface
Syntax for AGS Requests and Responses 4

Syntax for AGS Requests and Responses

The examples in this section show prototypical syntax for requests and responses. Values in
red italics are placeholders for actual values in a real request or response. You can get this
information from the WSDL, but it is presented here to provide context for some additional
information.

Requests for AGS Processing

The HTTP request that expresses an AGS request consists of:

● A standard HTTP POST method.

● A special header called SOAPActionwith a value of "Execute". This causes the AGS Web
service to invoke the execute method.

● A SOAP envelope that contains the AGS request information.

The following code shows a full HTTP request that expresses an AGS request for processing.
All items in (red) italics in the following example are placeholders for actual values you
supply. All string values in the request should be properly encoded using their Unicode codes,
as required by XML.

The Web Service Interface Requests for AGS Processing

Syntax for AGS Requests and Responses4

84 Nov 13, 2002 Adobe Graphics Server API Reference

EXAMPLE 4.1 An HTTP/SOAP request for AGS processing

1 POST /altercast/AlterCast HTTP/1.1
2 Host: localhost
3 Content-Type: text/xml; charset=utf-8
4 Content-Length: length
5 SOAPAction: "http://ns.adobe.com/altercast/1.5/Execute"
6
7 <?xml version="1.0" encoding="utf-8"?>
8 <soap:Envelope
9 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
10 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
11 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
12 <soap:Body>
13 <request xmlns="http://ns.adobe.com/altercast/1.5/">
14 <commands>string</commands>
15 <files>
16 <file>
17 <name>string</name>
18 <data>base64Binary</data>
19 </file>
20 <file>
21 <name>string</name>
22 <data>base64Binary</data>
23 </file>
24 </files>
25 <variables>
26 <variable>
27 <name>string</name>
28 <value>string</value>
29 </variable>
30 <variable>
31 <name>string</name>
32 <value>string</value>
33 </variable>
34 </variables>
35 </request>
36 </soap:Body>
37 </soap:Envelope>

● Lines 1-5 contain the HTTP header information. Line 5 specifies the special SOAPAction
header.

The remaining lines define the SOAP envelope that contains the AGS request information:

● Lines 8-11 contain the standard SOAP attributes for the soap:Envelope element.

● Line 13 starts the AGS request portion of the body.

● Line 14 specifies the AGS commands for the request. The example shows how to specify
the commands as a string within the request body. This single line will be replaced by
multiple actual lines of text, depending on how many commands you need to specify in the
request.

Adobe Graphics Server API Reference Nov 13, 2002 85

Responses to Successful Processing The Web Service Interface
Syntax for AGS Requests and Responses 4

The basic requirement for a command set is that it be nested inside a commands element. When
submitting requests directly to the Web service, you need an additional command element,
nested inside the outer one and appropriately escaped for XML. All text within this internal
commands element must also be escaped. The following code is an example of a short
commands string that would replace line 14 in an actual request.

<commands>
<commands>

<imageSize width="500" height="300"/ >
</commands>

</commands>

● Line 15 starts the list of input files for this request. This element is followed by any number
of file elements, each one specifying one input file. This example shows two such files.
You specify the file data directly as a base-64 binary encoded string. For example, if the
following command is specified in the command set:

<loadContent source="flower">

the files element should contains a corresponding element like this:
<file>

<name>flower</name>
<data>...etc...</data>

<file/>

As an alternative to specifying the input as a string, you can specify the input with an
attachment. The following URL describes the specification for including MIME
attachments in SOAP messages: http://www.w3.org/TR/SOAP-attachments.

● Line 25 starts the list of variables for this request. This element is followed by any number
of variable elements, each one specifying a single variable name/value pair. This data is
read into a content holder called “data” and is used for automatic variable replacement and
for explicit variable replacement with the applyVariables command, if you do not
specify another source of input for the command.

Responses to Successful Processing

The HTTP request that expresses the response from an AGS request that was successfully
processed consists of:

● An error code — The Web service returns a 200 (OK) when the request was successfully
processed.

● The results of the processing — Results are enclosed in a SOAP envelope in the message
body that contains the AGS response information. Log messages generated during request
processing are always returned. Result files are returned in the response if you did not
specify a result location in the AGS request or otherwise save the results to the file system.

The following code shows the syntax for a full HTTP response that AGS sends after it
successfully processes a request. All items in (red) italics in the following example are
placeholders for actual data values. Strings in the response are appropriately escaped for
XML.

The Web Service Interface Responses to Successful Processing

Syntax for AGS Requests and Responses4

86 Nov 13, 2002 Adobe Graphics Server API Reference

EXAMPLE 4.2 An HTTP/SOAP response indicating successful AGS processing

1 HTTP/1.0 200 OK
2 Content-Type:text/xml
3
4 <?xml version="1.0" encoding="utf-8"?>
5 <soap:Envelope
6 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
7 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
8 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
9 <soap:Body>
10 <response xmlns="http://ns.adobe.com/altercast/1.5/">
11 <files>
12 <file>
13 <name>string</name>
14 <width>int</width>
15 <height>int</height>
16 <type>string</type>
17 <extension>string</extension>
18 <data>base64Binary</data>
19 </file>
20 <file>
21 <name>string</name>
22 <width>int</width>
23 <height>int</height>
24 <type>string</type>
25 <extension>string</extension>
26 <data>base64Binary</data>
27 </file>
28 </files>
29 <log>
30 <entry>string</entry>
31 <entry>string</entry>
32 </log>
33 </response>
34 </soap:Body>
35 </soap:Envelope>

● Lines 1-2 contain standard HTTP header information.

● Lines 5-8 contain the standard SOAP attributes for the soap:Envelope element.

● Line 10 starts the AGS response portion of the body.

● Line 11 starts the list of results. The files element is followed by any number of file
elements, each one specifying one result file. Besides the result contents, returned as a
base-64 binary encoded string, the result content’s name, MIME type, file extension, and

Adobe Graphics Server API Reference Nov 13, 2002 87

Responses to Unsuccessful Processing The Web Service Interface
Syntax for AGS Requests and Responses 4

width and height in pixels are returned. The exact meaning of this information is the same
as is explained in the Java, Perl, and COM API chapters in this guide.

If you included the input files as MIME attachments in your request, AGS returns any
results included in the response as MIME attachments also.

If you specified a result location in the request, result files are written to the Web service’s
local file system and the files element is omitted.

● Line 29 starts the list of log messages related to this request. The log element is followed
by any number of entry elements, each one specifying a single log string that AGS
generated while processing the request. If no log messages were generated, the log
element is omitted.

Responses to Unsuccessful Processing

The HTTP response that expresses the response from an AGS request that was unsuccessfully
processed consists of:

● An error code — The Web service returns a 500 (Internal Server Error) when the request
was not successfully processed.

● Error information — The error information is enclosed in a SOAP envelope in the message
body.

The following code shows the syntax for a full HTTP response that AGS sends when it fails to
successfully process a request. All items in (red) italics in the following example are
placeholders for actual data values. Strings in the response are appropriately escaped for
XML.

EXAMPLE 4.3 An HTTP/SOAP response indicating an AGS processing failure

1 HTTP/1.0 500 Internal Server Error
2 Content-Type:text/xml
3
4 <?xml version="1.0" encoding="utf-8"?>
5 <soap:Envelope
6 xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
7 <soap:Body>
8 <soap:Fault>
9 <faultcode>soap:Server</faultcode>
10 <faultstring>Could not handle the request because reason
11 </faultstring>
12 <detail>
13 <log xmlns="http://ns.adobe.com/altercast/1.5/">
14 <entry>[NOTICE] Starting AlterCast request.</entry>
15 <entry>[ERROR] Unknown command 'commandName'.
16 </entry>
17 </log>
18 </detail>
19 </soap:Fault>
20 </soap:Body>
21 </soap:Envelope>

The Web Service Interface Responses to Unsuccessful Processing

Syntax for AGS Requests and Responses4

88 Nov 13, 2002 Adobe Graphics Server API Reference

● Lines 1-2 contain standard HTTP header information.

● Lines 5-21 contain the SOAP body:

– On line 9, the value of the faultcode element is always either soap:Client or
soap:Server. The former indicates that the request the client sent is invalid in some way.
The latter means the server failed to execute the request for some other reason.

– Lines 12-18 contain detailed information about the failure. The detail element is
followed by a log element that contains an entry element for each log message that
AGS generated while it was processing the request.

Adobe Graphics Server API Reference Nov 13, 2002 89

5 The COM API

This chapter explains the details of the COM (Component Object Model) API for AGS.
General information about the underlying API model and other information that applies to all
of the AGS APIs is contained in Chapter 1, “The Adobe Graphics Server Interfaces.”

NOTE: The AGS COM API is supported only on Windows platforms.

This chapter contains the following sections. Within each section that details the contents of a
COM interface, the methods are presented alphabetically:

An Overview of the COM API

NOTE: This section is not a general COM tutorial. We assume that if you are using this
chapter, you already understand what COM is and have at least a basic working
knowledge of how to use it.

Simply put, COM is a mechanism that allows you to build reusable binary components, and to
exercise code written in one language from code written in another language. For example, the
AGS COM library is written in C++, but you can access its methods from a variety of
interpretive programming languages, such as Visual Basic, VBScript, JavaScript, and Perl, as
well as some compiled languages, such as C and C++. COM provides a neutral
language-independent binding between the code you write and the AGS code.

An Overview of the COM API starting on page 89

The IACServer Interface starting on page 96

The IACRequest Interface starting on page 101

The IACResponse Interface starting on page 108

The IACData Interface starting on page 109

The IACRecord Interface starting on page 110

The IACLog Interface starting on page 112

Handling Errors starting on page 113

The COM API
An Overview of the COM API5

90 Nov 13, 2002 Adobe Graphics Server API Reference

The AGS COM API is supported only on Microsoft® Windows platforms: Windows NT® and
Windows 2000. You can invoke the object constructors and API methods on either the local
system or on a remote system, depending on how you have installed and configured AGS and
on what platform(s) you are operating.

This chapter focuses on using the COM API from interpretive languages, but much of the
information presented here is directly generalizable to the compiled languages as well. The
differences lie in the actual method signatures presented by the AGS DLL.

Terms Used in This Chapter

Throughout this chapter, the following terms are used as follows:

COM The version of COM that comes with Windows NT. This term is also sometimes
used as a generic umbrella term for both COM and COM+. The context should make
it clear which meaning is meant.

COM+ The version of COM that comes with Windows 2000. COM+ contains all the
functionality of COM and some additional capabilities — object pooling, security,
and constructor strings, to name a few.

When you install AGS with its COM SDK option on a Windows 2000 system, the
installer automatically creates a COM+ application configured for pooling. However,
you are not bound to using the COM+ features on these platforms — you can simply
use COM instead of COM+.

COM SDK All the necessary files and executables that come with COM. This SDK is
automatically installed with Windows NT.

COM+ SDK All the necessary files and executables that come with COM+. This SDK is
automatically installed with Windows 2000.

COM server A generic term to cover a system on which either the COM or COM+ SDK has been
installed.

AGS COM API A collection of COM interfaces that define the API to AGS through both COM and
COM+. When the immediate context makes it clear, this is sometimes shortened to
the COM API.

COM or COM+

Your code

Written in C++

Provides binding for different languages
and compilers

COM+ also provides object pooling,
constructor strings, security, etc.

Can be written in Visual Basic, VBScript, JavaScript,
Perl, C, or C++

Can access methods in the AlterCastCOM DLL, using
the mechanisms provided by COM

AGS COM DLL

Adobe Graphics Server API Reference Nov 13, 2002 91

The COM API
An Overview of the COM API 5

The API Interfaces

Conceptually, you can group the methods in the AGS COM API into three main groups:

● Servers — Methods you use to create a connection to an AGS server and to send requests
via this connection.

● Requests — Methods you use to construct AGS requests.

● Responses — Methods you use to obtain the results of a processed AGS request that you
have sent.

The AGS COM API consists of six interfaces and their corresponding objects, as shown in the
following table:

The only two objects in the above list that you need to create instances of are the ACServer
and ACRequest objects — all the response–related objects are created by AGS when it finishes
processing a request. The exact syntax for creating these objects varies, depending on the
language you use to exercise the AGS COM API. All languages, however, give you the option
of specifying a particular machine on which the object is created. There are some restrictions

The AGS COM library The file called AlterCastCOM.dll which defines the interface and provides the
implementation for the AGS COM API.

COM+ application A group of related COM components that you can configure individually and as a
whole, and that operate together in the COM+ environment. You can see the COM+
applications on a system from the control panel
(Start > Settings > Control Panel) under Administrative Tools
(Component Services> Computers>My Computer > COM+ Applications).

TABLE 5.1 A summary of the COM API

Conceptual Area COM Interface COM Object Methods

AGS Servers IACServer ACServer execute, getVersion
addFontFolder
setLogLevel, SetLogFile

AGS Requests IACRequest ACRequest addData, addFile, addString
addVariable
setCommands, setCommandsFile
setCommandsFileOnServer
setResultLocation
setResultOverwrite

Results of Processed Requests IACResponse ACResponse getLog, getData

IACLog ACLog count, item

IACData ACData count, item

IACRecord ACRecord getData, getName
getExtension, getType
getHeight, getWidth

The COM API
An Overview of the COM API5

92 Nov 13, 2002 Adobe Graphics Server API Reference

on where you can create the Server and Request objects, depending on the system
configuration you are using. These restrictions are explained in Table 5.3 on page 94.

The AGS SDK includes samples that demonstrate how to use the methods discussed in this
chapter. There are samples that use the COM API from C++, JavaScript, and VBScript. See
the directory samples/api/com wherever you install the SDK.

General Order of Method Use

The general order in which you use the methods in the COM API is as follows:

1. You create an ACServer object. Exactly how you do this is determined by the programming
language you are using.

2. You create a ACRequest object. Exactly how you do this is determined by the programming
language you are using. You then use the Request object’s methods to populate the request.

NOTE: Steps 1 and 2 are interchangeable — it doesn’t matter whether you create the server or
the request first.

3. You send the request to the server. You pass your ACRequest object to the ACServer
object’s execute method.

4. You get the results of the processing done in response to the request. When the execute
method terminates, it returns an ACResponse object. You extract the collection of results
and the collection of log messages from this object, and then extract individual results or
messages from these collections.

Since the Server object persists after it handles a request, you can repeat steps 2 - 4 any
number of times, using the same Server object.

Local and Remote Execution

The system on which you create the ACServer object determines the system on which AGS
executes the requests you send to this server. The nature of COM allows you, under certain
circumstances, to create the Server object on one system and your request objects on a
different system, one or both of which may not be the same system on which your program
that creates these objects is running. The following sections explain all of this.

Adobe Graphics Server API Reference Nov 13, 2002 93

The COM API
An Overview of the COM API 5

Local Execution

Table 5.2 explains the system configuration needed to execute AGS requests on the same
system on which your program runs.

Remote Execution

If you plan to run any part of AGS on a system other than the one on which your program runs,
some restrictions apply. You may want to run your program on your local system, but create
your request objects on another system, because that is where all the files you will add to your
requests exist. Or you may want to run the program locally but run the AGS server on another
system, for a variety of reasons. Your client system may not have sufficient hardware resources
to run AGS. You may have many client systems, not all of which have AGS installed or
licensed. The client and AGS may both be resource intensive, causing them to compete for
resources unless run on separate systems.

Once you introduce remote execution, you introduce two sets of variables: the operating
system on the local and remote machines, and whether you are using COM or COM+ on those
machines. The restrictions that apply to remote execution can best be explained in the context
of whether you are using COM or COM+. Table 5.3 is organized on this principal. When using
this table, keep in mind the following restrictions:

● You can use COM on both Windows NT and Windows 2000.

● You can use COM+ only on Windows 2000.

TABLE 5.2 Using the AGS COM API for local execution of requests

Windows
platform Requirements for using the AGS COM API

NT Installation requirements:
• The AGS COM library is registered with Windows. The AGS installer does this

for you. No further setup or configuration is necessary.

Execution requirements:
• Create all of your ACServer and ACRequest objects on the local system.

2000 Installation requirements:
• AGS is installed with the COM SDK option on the local system.
• The AGS COM library is registered with Windows. The AGS installer does this

for you.
• You can use either COM or COM+ on this platform. If you wish to use COM+, a

COM+ application for AGS must exist and be appropriately configured. The AGS
installer does this automatically for you when you install on Windows 2000. You
can, however, change the configuration of the application once it is created.

Execution requirements:
• Create all of your ACServer and ACRequest objects on the local system.

The COM API
An Overview of the COM API5

94 Nov 13, 2002 Adobe Graphics Server API Reference

In Table 5.3:

● The Local column identifies whether COM or COM+ is being used on the local machine.
This is the machine on which your program that exercises the AGS COM API is running.

● The Remote column identifies whether COM or COM+ is being used on the remote
machine(s).

Method Signatures

The COM API can be used from a variety of languages, both interpretive and compiled.
Because the terminology, syntax, and built–in types of these languages vary, we have chosen
to use particular terms and types in a general sense.

We use the term method to cover C functions, C++ methods, Perl subroutines, etc. The
method prototypes given in the synopsis sections in this chapter are presented in a generic
form that looks much like Visual Basic, and uses generic names for common built–in types.
The following table shows the type equivalency between this generic type and the actual types
in the supported languages.

TABLE 5.3 Using the AGS COM API for remote execution of requests

Local Remote Execution requirements and capabilities

COM ➟ COM All ACServer and ACRequest objects must be created on a single remote
machine. No objects can be created locally.

COM+ ➟ COM

COM ➟ COM+ All ACServer and ACRequest objects must be created on one or more
remote machines. This means you could create an ACServer object on
one machine and an ACRequest object on a different machine. However,
no objects can be created on the local machine.

COM+ ➟ COM+ You can create any combination of ACServer and ACRequest objects, all
remotely on the same machine, all remotely on multiple machines, or
some locally and some remotely on one or more machines. This scenario
obviously gives you the most flexibility.

