
However, the question of whether or not an impulse in
the spectrum represents avisibleperiodic component in the
image strongly depends on properties of the human visual
system. The fact that the eye cannot distinguish fine details
above a certain frequency~i.e., below a certain period! sug-
gests that the human visual system model includes a low-
pass filtering stage. This is a bidimensional bell-shaped fil-
ter whose form is anisotropic~since it appears that the eye
is less sensitive to small details in diagonal directions such
as 45°!.7 However, for the sake of simplicity this low-pass
filter can be approximated by thevisibility circle, a circular
step function around the spectrum origin whose radius rep-
resents thecutoff frequency~i.e., the threshold frequency
beyond which fine detail is no longer detected by the eye!.
Obviously, its radius depends on several factors such as the
contrast of the observed details, the viewing distance, light
conditions, etc. If the frequencies of the original image el-
ements are beyond the border of the visibility circle in the
spectrum, the eye can no longer see them; but if a strong
enough impulse in the spectrum of the image superposition
falls inside the visibility circle, then a moire´ effect becomes
visible in the superposed image.~In fact, the visibility
circle has a hole in its center, since very low frequencies
cannot be seen, either.!

For the sake of convenience, we may assume that the
given images~gratings, grids, etc.! are symmetrically cen-
tered about the origin. As a result, we will normally deal
with images~and image superpositions! which arereal and
symmetric, and whose spectra are, consequently, also real
and symmetric~Ref. 6, pp. 14, 15!. This means that each
impulse in the spectrum~except for the dc impulse at the
origin! is always accompanied by a twin impulse of an
identical amplitude, which is symmetrically located at the
other side of the origin as in Fig. 2~their frequency vectors
aref and2f!. If the image is nonsymmetric~but, of course,
still real!, the amplitudes of the twin impulses atf and2f
are complex conjugates.

2.2 Spectrum Convolution and Superposition
Moirés

According to the convolution theorem@Eqs.~1!, ~2!#, when
m line gratings are superposed in the image domain, the
resulting spectrum is the convolution of their individual
spectra. This convolution of combs can be seen as an op-
eration in which frequency vectors from the individual
spectra are added vectorially, while the corresponding im-
pulse amplitudes are multiplied. More precisely, each im-
pulse in the spectrum convolution is generated during the
convolution process by the contribution ofone impulse
from eachindividual spectrum: its location is given by the
sum of their frequency vectors, and its amplitude is given
by the product of their amplitudes. This permits us to in-
troduce an indexing method for denoting each of the im-
pulses of the spectrum convolution in a unique, unambigu-
ous way. The general impulse in the spectrum convolution
will be denoted the (k1 ,k2 ,...,km) impulse, wherem is the
number of superposed gratings, and each integerki is the
index ~harmonic!, within the comb~the Fourier series! of
the i th spectrum, of the impulse that thisi th spectrum con-
tributed to the impulse in question in the convolution. Us-
ing this formal notation we can, therefore, express the geo-

metric location of the general (k1 ,k2 ,...,km) impulse in the
spectrum convolution by the vectorial sum~or linear com-
bination!

fk1 ,k2 ,...,km
5k1f11k2f21...1kmfm ~3!

and its amplitude by

ak1 ,k2 ,...,km
5a~1!

k1
a~2!

k2
...a~m!

km
, ~4!

where f i denotes the frequency vector of the fundamental
impulse in the spectrum of thei th grating, andki f i and
a( i )

ki
are, respectively, the frequency vector and the ampli-

tude of theki th harmonic impulse in the spectrum of thei th
grating.

The vectorial sum of Eq.~3! can also be written in terms
of its Cartesian components. Iff i are the frequencies of the
m original gratings andu i are the angles that they form
with the positive horizontal axis, then the coordinates
( f u , f v) of the (k1 ,k2 ,...,km) impulse in the spectrum con-
volution are given by

f uk1 ,k2 ,...km
5k1f 1 cosu11k2f 2 cosu21...1kmf m cosum ,

~5!
f vk1 ,k2 ,...,km

5k1f 1 sinu11k2f 2 sinu21...1kmf m sinum .

Therefore, the frequency, the period, and the angle of the
considered impulse~and of the moire´ it represents! are
given by the length and the direction of the vector
fk1 ,k2 ,...,km

as follows:

f 5Af u
21 f v

2 TM51/f wM5arctan~ f v / f u!. ~6!

Let us now say a word about the notations used for the
superposition moire´s. We use a notational formulation
which provides a systematic means for identifying the vari-
ous moiréeffects. As we have seen, a (k1 ,k2 ,...,km) im-
pulse of the spectrum convolution which falls close to the
spectrum origin, inside the visibility circle, represents a
moiré effect in the superposed image~see Fig. 3!. We call
the m-grating moiré whose fundamental impulse is the
(k1 ,k2 ,...,km) impulse in the spectrum convolution a
(k1 ,k2 ,...,km) moiré; the highest absolute value in the in-
dex list is called theorder of the moiré. Note that in the
case of doubly periodic images, such as in dot screens, each
image can be represented in the superposition by a pair of
onefold periodic functions; hence,m in Eqs.~3!–~5! above
counts each doubly periodic layer as two onefold periodic
structures.

2.3 Singular States; Stable Versus Unstable Moiré-
Free Superpositions

We have seen that if one or several of the new impulse
pairs in the spectrum convolution fall close to the origin,
inside the visibility circle, this implies the existence in the
superposed image of one or several moire´s with visible
periods@see, for example, Figs. 3~c! and 3~f!#. An interest-
ing special case occurs when some of the impulses of the
convolution fall exactly on top of the dc impulse, at the
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spectrum origin. This happens, for instance, in the trivial
superposition of two identical gratings in match, with an
angle difference of 0° or 180°; or, more interestingly, when
three identical gratings are superposed with angle differ-
ences of 120° between each other~see second and third
rows of Fig. 4!. As can be seen from the vector diagrams,
these are limit cases in which the vectorial sum of the fre-
quency vectors is exactly0. This means that the moire´ fre-
quency is 0~i.e., its period is infinitely large!, and, there-
fore, as shown in Figs. 4~d! and 4~g!, the moiré is not
visible. This situation is called asingular moiréstate. But,
although the moire´ effect in a singular state is not visible,
this is a very unstable moire´-free state, since any slight
deviation in the angle or in the frequency of any of the
superposed layers may cause the new impulses in the spec-
trum convolution to move slightly off the origin, thus caus-
ing the moiréto ‘‘come back from infinity’’ and to have a
clearly visible period, as shown in Figs. 4~e! and 4~h!.

It is important to understand, however, that not all the
moiré-free superpositions are singular~and hence unstable!.
For example, the superposition of two identical gratings at
an angle of 90° is indeed moire´ free; however, it is not a
singular state, but rather astable moire´-free state: as shown
in the first row of Fig. 4, no moire´ becomes visible in this
superposition even when a small deviation occurs in the
angle or in the frequency of any of the layers. The corre-
sponding situation in the spectral domain is clearly illus-
trated in Fig. 4~c!, which shows the vector diagram of the
superposition of Fig. 4~b!.

Formally, we say that a singular moire´ state occurs
whenever a (k1 ,...,km) impulse@other than~0,...,0!# in the
spectrum convolution falls exactly on the spectrum origin,
i.e., when the frequency vectors of them superposed grat-
ings, f1 ,...,fm , are such that( i 51

m ki f i50. This implies, of
course, that all the impulses of the (k1 ,...,km)-moiré comb

Fig. 3 Line gratings (a) and (b) and their superposition (c) in the image domain; their respective
spectra are the infinite impulse combs shown in (d) and (e) and their convolution (f). Only impulse
locations are shown in the spectra, but not their amplitudes. The circle in the center of the spectrum (f)
represents the visibility circle. It contains the impulse pair whose frequency vectors are f12f2 and f2

2f1 and whose indices are (1,21) and (21,1); this is the fundamental impulse pair of the (1,21) moiré
seen in (c). The dotted line in (f) shows the infinite impulse comb which represents this moiré.
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Fig. 4 Examples of stable and unstable (5singular) moiré-free states. First row: (a) the superposition
of two identical gratings at an angle difference of 90° gives a stable moiré-free state; small angle or
frequency deviations, as in (b), do not cause the appearance of any visible moiré. The spectral
interpretation of (b) is shown in the vector diagram (c). Second row: (d) the superposition of two
identical gratings at an angle difference of 0° gives a singular (unstable) moiré-free state. (e) A small
angle or frequency deviation in any of the layers causes the reappearance of the moiré with a very
significant visible period. The spectral interpretation of (e) is shown in the vector diagram (f); compare
to Fig. 3(f) which also shows impulses of higher orders. Third row: (g) the superposition of three
identical gratings with angle differences of 120° gives an unstable (singular) moiré-free state; again,
any small angle or frequency deviation may cause the reappearance of a very significant moiré, as
shown in (h) and in its vector diagram, (i).
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