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High-speed first- and second-order frequency modulated
halftoning

Sasan Gooran* and Björn Kruse
Linköping University, Department of Science and Technology, Norra Grytsgatan 10A, Norrköping 601 74, Sweden

Abstract. Halftoning is a crucial part of image reproduction in print. First-order frequency modulated (FM) half-
tones, in which the single dots are stochastically distributed, are widely used in printing technologies, such as
inkjet, that are able to stably print isolated dispersed dots. Printers, such as laser printers, that utilize electro-
photographic technology are not able to stably print the isolated dots and, therefore, use clustered-dot halftones.
Periodic clustered-dot, i.e., amplitude modulated halftones are commonly used in this type of printer, but they
suffer from an undesired periodic interference pattern called moiré. An alternative solution is to use second-order
FM halftones in which the clustered dots are stochastically distributed. The iterative halftoning techniques that
usually result in well-formed halftones operate on the whole input image and require extensive computations and
thus, are very slow when the input image is large. We introduce amethod to generate image-independent thresh-
old matrices for first- and second-order FM halftoning. The first-order threshold matrix generates well-formed
halftone patterns and the second-order FM threshold matrix can be adjusted to produce clustered dots of differ-
ent sizes, shapes, and alignment. Using predetermined and image-independent threshold matrices makes the
proposed halftoning method a point-by-point process and thereby very fast.© 2015 SPIE and IS&T [DOI: 10.1117/1.JEI
.24.2.023016]
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1 Introduction
Many reproduction devices, e.g., printers, have a limited
number of output states, leaving the choice of printed and
nonprinted spots in order to reproduce a shade. Thus, con-
tinuous tone gray-scale or color images need to go through a
process called halftoning before being printed. Because of
the fact that the human eye is limited in its capacity to resolve
small dots and dots close to each other, if the viewing dis-
tance is long or the dots are small enough, the human eye is
not able to distinguish between the original image and the
halftone one. Hence, since the human eye acts as a low-
pass filter, the halftones appear pleasing if the difference
between the original and the halftone is small in the low-fre-
quency region.

Halftoning algorithms are commonly categorized into two
main subgroups, called amplitude modulated (AM) and fre-
quency modulated (FM). In AM, i.e., periodic clustered-dot
halftones, different shades of gray are reproduced by chang-
ing the size of the dots while keeping their spacing constant.
In first-order FM, dispersed-dot halftones, on the other hand,
the size of the dots is constant while their density (or fre-
quency) is variable. There is also another type of halftones,
which we call second-order FM in this paper, in which both
the size and the frequency are variables. In these halftones,
the clustered dots are stochastically distributed. In literature,
this type of halftones is also referred to as stochastic clus-
tered-dot halftones and even green-noise dither patterns.
In Ref. 1, the radially averaged power spectrum (RAPS)
curves for these three types of halftones, i.e., AM, first-
order and second-order FM, are illustrated, which helps to
study their spectral characteristics in different frequency

ranges. The well-formed first-order FM halftones usually
have the blue-noise characteristic meaning that the quantiza-
tion noise produced by the halftoning process is shifted to a
higher frequency where the human eye is less sensitive.2,3

The choice of the appropriate halftone is, however, not
always based on their frequency characteristic, but some-
times based on the properties and limitations of the printing
devices. For example, inkjet printers are able to stably print
dispersed isolated dots while printers using electrophoto-
graphic (EP) technology cannot stably print isolated dots.
Today, EP technology is used in xerographic reproduction
devices such as laser printers. Clustered dots are, therefore,
preferred for this type of printer.1,4 Besides printers using EP
technology, there are other printing technologies such as
flexography in which clustered dots are preferred especially
in the midtones because the dot gain is lower and better con-
trolled when the dots are clustered.5 However, although peri-
odic clustered (AM) halftones are quite smooth, they usually
suffer from moiré, which occurs because of the periodic
interference of different colorant channels. This issue is usu-
ally dealt with by adjusting each colorant channel at a spe-
cific angle in four-channel CMYK printing.6 This adjusting
causes another type of pattern, called rosettes, which occur
with higher frequency than moiré and are not visible if the
screen frequency is high enough. However, when the quality
of the paper is not high, for example, newspaper paper, the
screen frequency cannot be high enough and the rosette pat-
terns are visible. Furthermore, in multichannel printing,
which uses more than the conventional four CMYK inks,
the problem with moiré is more serious and not so easy
to handle when using AM halftones. Therefore, second-
order FM halftones provide a solution because of their
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stochastic nature of distributing the clustered dots, which
makes them free from the problem of the periodic interfer-
ence of different colorants.

This is why there have been many commercial screenings,
such as Kodak Staccato screening and Fujifilm’s TAFFETA
screening, developed for producing stochastic clustered dots.
There have also been inventions registered as patents that
describe models to produce such halftones.7–11 Furthermore,
many models have been proposed in literature for producing
stochastic clustered-dot halftones. Some of them are based
on error-diffusion.12–14 Levien12 proposed an extension to
error diffusion halftoning by an output-dependent feedback
term, which can control the halftone patterns and texture with
a minimum of computational expense. These new patterns
were shown by Lau et al.13 to be green-noise like, containing
neither low-frequency nor high-frequency components. Li
and Allebach used Levien’s output-dependent feedback term
to modify the threshold to gain more control over dot size
and dot shape and also reduce the midtone artifacts.14

Besides these models based on error diffusion, there are
also other models for second-order FM halftoning reported
in the literature.15–17 Lau et al.15 proposed a technique for
generating green-noise halftones by employing a dither
array referred to as a green-noise mask. In Ref. 16, the
authors proposed a donut filter approach to produce pleasing
stochastic clustered-dot halftone patterns, referred to as AM-
FM halftones. Gupta et al.17 proposed a method based on
direct binary search (DBS), which was originally developed
for first-order FM halftoning. The DBS procedure is modi-
fied by use of different filters in the initialization and update
phases. The proposed technique also gives the possibility to
the user to control the clustered dot size to suit their needs.

One of the biggest challenges for halftoning methods to
be applied in practice is their operational time. The iterative
models, which commonly produce better halftones, gener-
ally operate on the whole or part of the input image. These
types of methods are image dependent, and are directly
applied to the original continuous tone image. For example,
in order to produce a printed image of the size of an A4-page,
i.e., approximately 8 × 11 in:, at 1200 dpi an image of size
9600 × 13;200 pixels is to be halftoned. If the iterative meth-
ods were directly applied to such a large image it would
require a large amount of data to be processed, which makes
the computational procedure very slow. On the other hand,
halftoning models, such as ordered dithering, that are oper-
ating point-by-point, are very fast. These types of methods
are image independent and use predetermined threshold
matrices, making the only computation for halftoning be
the comparison between each pixel value in the original
image with the corresponding value in the threshold matrix.
This makes these techniques feasible to be used in practice
and especially in prints using high print resolutions.

In a recently published paper, a stochastic clustered-dot
halftoning method was introduced that parametrically con-
trols the dot shape and seed placement adaption to the
local image structure.18 The proposed method is an extension
of methods for the control of periodic halftones to irregular
seed structures by using a spot function to define thresholds
to be applied to an input image on a point-by-point basis.18,19

By adjusting the involved parameters in the spot function,
the dot cluster growth, touch points, cluster angles, and
eccentricity in the halftone image are controlled.18 However,

the proposed stochastic technique is not able to produce per-
fectly symmetric patterns.18 An extension of the proposed
monochromatic halftoning method to a dot-off-dot vector
halftoning is also introduced in Ref. 18. For an input
pixel having, for example, three nonzero colorants, different
thresholds are used for the darkest, second darkest, and light-
est colorant.18

In this paper, we proposed a method to generate image-
independent threshold matrices for first-order and second-
order FM halftoning. Despite the stochastic nature of the pro-
posed technique, it is possible to achieve symmetrical half-
tone structures, i.e., symmetrical clusters and voids in the
two corresponding sides of the midtone. The proposed
method is based on our previous iterative first-order FM
model,20 referred to as the iterative method controlling the
dot placement (IMCDP) in the present paper. The approach
in IMCDP is used to generate an image-independent first-
order FM threshold matrix and is also modified to generate
second-order FM threshold matrices. By choosing appropri-
ate filters and filter parameters, the designer is given control
over the clustered dot size, halftone structures, dot shape, and
alignment. The proposed method also offers the possibility to
control the dot size for more than one graytone by using dif-
ferent filter parameters in different graytones. An extension
of the proposed monochromatic halftoning method to a color
halftoning method producing dot-off-dot structures is also
introduced in this paper. There are two possibilities to gen-
erate the threshold matrices for different colorant channels.
The one introduced in this paper is to generate one threshold
matrix for one colorant and calculate the other two based on
the first one to achieve a dot-off-dot structure, meaning that
the different colorant channels can be thresholded simulta-
neously using these three matrices and no further check
of the colorant values in different channels is needed. The
other possibility is to simultaneously generate the threshold
matrices for different colorant channels to both maintain dot-
off-dot structure and also homogeneously place the dots in
each colorant channel with respect to the dots in the other
channels.

The remainder of this paper is organized as follows.
Section 2 provides a brief description of the original
IMCDP method. Section 3 includes a description of the
new method to generate first-order FM halftoning together
with important parameters that affect the resulting halftones.
In Sec. 4, we describe how the filter used in the model can be
modified to generate second-order FM threshold matrices
and how the halftone structure, the clustered dot size, shape,
and alignment can be adjusted by the appropriate choice of
filters and filter parameters. In Sec. 5, we illustrate halftone
results using the proposed methods. The extension of the
proposed method to dot-off-dot halftoning is introduced in
Sec. 6 and Sec. 7 provides a brief conclusion.

In order to illustrate the results in a way that makes it pos-
sible to study the characteristics of the halftones and also
minimizes the effect of dot gain, all halftones in this
paper are printed at 150 dpi.

2 Iterative Method Controlling the Dot Placement
In this section, we briefly describe the IMCDP, which was
originally published in Ref. 20 as “monochromic halftoning
method.”
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2.1 Iterative Method Controlling the Dot Placement
Method

In IMCDP, halftone dots are placed iteratively with the goal
of reducing the difference between the original and the half-
tone image. The generation of the halftone image starts with
a blank image the same size as the original. The total number
of dots to be placed in the halftone image (or in a number of
different graytone regions) is dependent on the original
image’s overall lightness/darkness (or its average tone value
in different graytone regions) and, therefore, is known in
advance. Starting with a blank initial image, in the first iter-
ation, the algorithm finds the position of the darkest pixel
(the pixel holding the maximum value) in the original
image and places the first dot at that location in the halftone
image. In the next step, the low-pass filtered version of the
halftone image is subtracted from the low-pass filtered
version of the original image. The low-pass filter used is
a Gaussian filter with standard deviation 1.3 truncated to
11 × 11 pixels. This operation is addressed in Ref. 20 as
the feedback process, which is also going to be referred to
as the feedback process in the present paper. Subtracting the
filter from the image around the found pixel reduces the pixel
values in the neighborhood of that pixel, meaning that the
chance of the neighboring pixels to be picked as the next
maximum is reduced. Then, the location of the maximum
pixel value of the subtracted image is found and at that loca-
tion on the halftone image the next dot is placed. The process
continues until the known number of dots is placed and the
final halftone image is achieved.

2.2 Filter Design
Using an 11 × 11 Gaussian filter makes the method work
quite well for almost all kinds of images. However, the
dots in the extreme highlights (or shadows) are not placed
as homogeneously as one would expect. The reason is
that the 11 × 11 filter is not big enough to homogeneously
distribute the dots in those regions. The average distance
between the dots in a halftone, i.e., the principal wavelength,
is decided by λg ¼ 1∕ ffiffiffi

g
p

for 0 < g ≤ 1∕2, where g is the gray
level.2,3 Thus, the average distance between the dots in,
for example, a halftone at 1%, i.e., g ¼ 0.01, is 10 which
requires a 21 × 21 filter. In order to distribute the dots as
homogeneously as possible in the very light (and very
dark) regions in the proposed method, the size of the
Gaussian filter (or its standard deviation) is a variable of
the gray level of the region where the maximum is found.
The mentioned 11 × 11 Gaussian filter is used in the areas
with tonal values between 4% and 96% and for the rest
of the image, a filter with varying size (or standard deviation)
is used. The principal wavelength corresponding to the tones
decides the size of the filter.20

3 First-Order Frequency Modulated
In this section, how to design the threshold matrix for the
first-order FM is described. The goal is to generate halftones
having a blue-noise characteristic, meaning a homogeneous
distribution of dots in the halftones.

3.1 Threshold Matrix Generation
The procedure for generating an image-independent thresh-
old matrix is very similar to that of halftoning an image by

IMCDP. From now on, the abbreviation TMG is used to refer
to the threshold matrix generation method in this paper. The
main difference between IMCDP and TMG is that in the for-
mer method the input is the image being halftoned while in
the latter the input is an image holding random numbers. Let
us describe TMG by describing how a 256 × 256 threshold
matrix is generated. The input image (matrix) is the same
size as the intended threshold matrix (i.e., 256 × 256) hold-
ing uniformly distributed pseudorandom numbers. The ran-
dom numbers can, in principal, vary within any interval, but
the feedback filter has to be chosen accordingly, see Sec. 3.2.
In our method, the input matrix contains random numbers on
the open interval (0, 0.01). In IMCDP, a predecided number
of pixels are iteratively set to 1 in the initial blank image. In
TMG, the initial blank matrix is iteratively filled by the num-
bers from 1 to 2562 ¼ 65;536. Note that in the halftones, it is
very important to have both the “black pixels” and the “white
pixels” homogeneously distributed in the highlights and
shadows, respectively. It is also very important to have sym-
metrical dot distributions (or dot shapes) on both sides of the
midtone, i.e., 50%. For example, the black dots at 40%
should have the same structure/shape as the “white dots”
at 60%. Since the smallest threshold values being placed,
i.e., 1, 2, 3, etc., are important for the highlights, and the
largest values being placed, i.e., 65,534, 65,535, 65,536,
are important for the shadows, in our design, we place
two threshold values in each iteration, one small and one
large. This way the designed threshold matrix will generate
symmetric halftone structures in the highlights and shadows.
In order to do that, we create two input matrices containing
random numbers on the open interval (0, 0.01). For the sake
of simplicity let us call these two matrices P for the light
tones up to 50% and Q for the dark tones from 50% to
100%. At the first iteration, a 1 is first put in the initial
blank threshold matrix at the position where P holds the
maximum value and a large negative number is put at this
position in both P and Q to make sure that this position
would not be found as the maximum anymore. Then, the
feedback process, i.e., subtracting a filter around the found
maximum from the input matrix, is performed on P. After
this, in the same iteration, the largest threshold value, i.e.,
65,536, is put at the position where Q holds the maximum
value and a large negative number is put at this position in
both P and Q to make sure that this position would not be
found anymore. Then, the feedback process is performed on
Q. After that, the first iteration is terminated and the pixel
positions where the subtracted matrices, i.e., modified P
and Q, hold the maximum values are found again and set
to 2 and 65,535 in the threshold matrix. This procedure con-
tinues until the last iteration, i.e., iteration 2562∕2 ¼ 32;768,
where the last two empty positions in the threshold matrix
are filled with 32,768 and 32,769. Note that when the thresh-
old matrix is generated, it must be normalized between 0 and
1 if the original image is scaled to [0, 1]. This is done by
dividing all values in the generated threshold matrix by the
maximum value plus 1. From now on in this paper, we
assume that the generated threshold matrices and the images
being halftoned are normalized between 0 and 1, 0 represent-
ing white and 1 representing black. It is obvious that the filter
plays a significant role in the generation of the threshold
matrix. Before describing how to design the filter in Sec. 3.2,
there is one important point worth mentioning here.
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The important point is how to perform the feedback proc-
ess when the found maximum is close to an edge or a corner
of the matrix. In IMCDP, the filter could be cut when outside
the border of the image. In TMG, this situation has to be
considered because the generated threshold matrix might
be smaller than the image being thresholded and, therefore,
has to be tiled to be the same size as the image. Cutting the
feedback filter when outside the border of the matrix will
cause boundary artifacts where the matrices are joined.
This issue is coped with in TMG by performing a wrap-
around process. For example, if the found maximum is
close to the right edge, those parts of the filter that are outside
the right border will be subtracted from the mirror side of it
on the left edge. If the found maximum is, for example, close
to the up-right corner, parts of the filter are also subtracted
from the corresponding parts of the down-left corner. By
using this wrap-around process, the boundary artifact is pre-
vented, which will be further discussed in Sec. 3.3.

3.2 Filter Design
As discussed in Sec. 3.1, the generation of a well-formed
threshold matrix and thus, well-formed halftones are very
much dependent on the filter being used in the feedback
process. Thus, in this section, how to design an optimal filter
resulting in well-formed first-order FM halftones is
discussed.

3.2.1 Standard deviation of the filter

As in IMCDP, the following Gaussian filter, Eq. (1), is used
to perform the feedback process

fðm; nÞ ¼ e
−ðm2þn2Þ

2σ2 ; (1)

where ðm; nÞ and σ denote the position and the standard
deviation, respectively. The goal is, as in IMCDP, to place
the dots as far apart as possible in the highlights (and shad-
ows). This means, the smallest (and largest) threshold values
should be placed farther apart than those in the middle. For
example, for tonal coverages of g ¼ 0.01, g ¼ 0.02, and
g ¼ 0.04, the principal wavelength (the average distance
between the dots in a halftone) is λg ¼ 1∕ ffiffiffi

g
p ¼ 10, 7.1,

and 5, respectively. Awell-formed (blue noise) halftone pat-
tern of a fixed gray-level should consist of isolated dots with
an average distance close to λg.

2,3 Therefore, in order to have
well-formed halftones, the consecutive threshold values
should be placed with a distance close to λg. To give an indi-
cation of how to choose an appropriate σ, assume that the
filter is truncated when its weights are smaller than 0.001.

Then an appropriate σ can be found in Eq. (2) for a given
gray level g

e
−1
2gσ2 ¼ 0.001; (2)

where the square of the distance to the center of the filter,
i.e., m2 þ n2, in Eq. (1) has been replaced by λ2g ¼ 1∕g.
Equation (2) gives σ ¼ 2.7, σ ¼ 1.9, and σ ¼ 1.3, for
g ¼ 0.01, 0.02, and 0.04, respectively. In IMCDP, which
is an image-dependent method, in each iteration σ was a var-
iable of the tonal value of the region where the maximum
was found. If we now use the same strategy, then σ ¼ 2.7
has to be used to fill the threshold values from 1 to 655
(≈0.01 × 2562) in order to give a principal wavelength
close to 10. Then σ ¼ 1.9 should be used to fill the threshold
values from 666 to 1311 (≈0.02 × 2562), and so on. Since
TMG is supposed to generate an image-independent thresh-
old matrix, such a big change in σ over a small tonal variation
will not result in a well-formed threshold matrix. Consider an
image of constant gray level 0.01 that is thresholded with this
type of threshold matrix with varying σ according to Eq. (2).
The halftone result will look good and homogeneous
because only the dots corresponding to threshold values 1
to 655 are being placed in the halftone. The reason is that
those positions in the threshold matrix hold values less
than 0.01. Consider now another image of constant gray
level 0.1 being halftoned with the same threshold matrix.
All the dots corresponding to threshold values from 1 to
6554 (≈0.1 × 2562) are now placed in the halftone, but
many of them are not placed using an appropriate σ for
g ¼ 0.1. Therefore, these types of threshold matrices only
result in good halftones at very low coverages. Figure 1
shows halftones at g ¼ 0.02 and g ¼ 0.1 generated by a
threshold matrix with variable σ according to Eq. (2) and
IMCDP. It must be pointed out that in order to avoid sudden
changes in σ, it was varied very slowly, and not, for example,
suddenly from 2.7 at 0.01 to 1.9 at 0.02. This gradual change
has been done by interpolation with a step of 0.001. Figure 2
shows these halftones’ RAPS curves.2,3 The principal
frequencies, defined by fg ¼ 1∕λg ¼ ffiffiffi

g
p

for 0 < g ≤ 1∕2,
are 0.14 and 0.32 for the two examples and are shown in
Fig. 2. As shown in Figs. 1 and 2, the result of threshold
halftoning a halftone at 2% looks very good and its RAPS
shows a well-formed blue-noise characteristic, similar to the
halftone generated by IMCDP. Figures 1(c) and 2(b) solid
curve show that the thresholded halftone at 10% is not
well formed and the peak of its RAPS curve is not at the
principal frequency. The IMCDP halftone at 10%, on the
other hand, has a blue-noise characteristic, verified by its

Fig. 1 Two halftones at 2% and 10% generated: (a), (c) by a threshold matrix with variable sigma accord-
ing to Eq. (2) and (b), (d) by iterative method controlling the dot placement (IMCDP).

Journal of Electronic Imaging 023016-4 Mar∕Apr 2015 • Vol. 24(2)

Gooran and Kruse: High-speed first- and second-order frequency modulated halftoning

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 07/08/2015 Terms of Use: http://spiedl.org/terms



RAPS curve. This means that a variable standard deviation
according to Eq. (2) cannot be applied to the threshold gen-
eration process unless it changes very little, which will be
further discussed in Sec. 3.2.3.

3.2.2 Optimizing the filter

As discussed in Sec. 3.2.1, a threshold matrix with varying
standard deviation according to Eq. (2) only results in well-
formed halftones at low coverages. Therefore, in generation
of the threshold matrix, the standard deviation of the filter
should either be constant or vary over a small interval.
Let us first focus on finding an optimized constant standard
deviation for the generation of the threshold matrix. A large
standard deviation will surely work better for very light tones
and a small one better for a bit darker tones. Thus, the opti-
mized σ is somewhere in between. For the very light tones,
we already know that σ should be around 2.7 or larger. Let us
now find out what the smallest appropriate value of σ could
be. According to Eq. (2), for a halftone at 25%, we need to
use σ ¼ 0.54. Figure 3 shows RAPS curves for a halftone at
25% being halftoned by threshold matrices using four differ-
ent constant standard deviations, namely σ ¼ 0.54, 1, 1.2,
and 1.4. As clearly shown in Fig. 3, a standard deviation
according to Eq. (2), in this case σ ¼ 0.54 for g ¼ 0.25,
is very small and causes a nonwell-formed halftone pattern.
The reason is that using a small σ causes periodic structures
in this tonal range. By comparing the curves in Fig. 3, it is
noticed that σ around 1.2 is optimal for this halftone. The
principal frequency,

ffiffiffiffiffiffiffiffiffi
0.25

p ¼ 0.5, is also shown.
Therefore, according to Fig. 3, the smallest appropriate

value for standard deviation cannot be smaller than 1.0. In
order to find the optimal standard deviation we use the fol-
lowing measure. For each halftone, we calculate the distance
from a dot to its closest dot, which gives a set of distances.
The average of this set gives the average distance between
dots in the halftone, corresponding to the principal wave-
length. The average distance can be used as one measure.
However, a high average distance does not necessarily
mean homogeneously placed dots. For that, the standard
deviation of the set needs to be calculated as well. A
small standard deviation means that the distances are
close to the average, which means homogeneously placed
dots. Another useful measure could be the ratio of this stan-
dard deviation to the average distance. Note that if the dots

are placed in a grid, then although the standard deviation is
zero, its RAPS curve will show a spike (or spikes) indicating
that the halftone does not have the intended blue-noise char-
acteristic.1 Therefore, this measure can only be used if further
checks with RAPS curves are made. In order to find the opti-
mal σ, halftone patches at 1%, 2%, and up to 25% coverage
were created using the threshold matrix with different con-
stant σ:s between 1 and 2.7 with a step of 0.1. For each σ, the
sum of the average distances, the standard deviations, and the
ratios of standard deviation to the distance were calculated.
The largest sum of the average distances occurred for
σ ¼ 1.3, but all σ:s from 1.1 to 1.5 gave almost the same
sum. The sum of the standard deviations was minimized
for σ ¼ 1.1, but σ between 1.1 and 1.3 gave a very close
sum. The smallest sum of the ratios occurred for σ ¼ 1.1.
Therefore, a σ around 1.1 is an appropriate and optimized
standard deviation according to the used measures. The
PARS curves for all patches have been checked to make
sure that no periodic structure occurs. Figures 4(a) and 4(c)
show halftones at 2% and 10% generated by the threshold
matrix using a constant σ ¼ 1.1. Their corresponding
RAPS curves (dashed curves) are shown in Fig. 5. Setting
σ ¼ 1.1 in Eq. (2) gives g ¼ 0.06, meaning that σ ¼ 1.1
is too small to result in well-formed halftones for tones

Fig. 2 Radially averaged power spectrum (RAPS) curves for halftones using IMCDP and threshold
matrix with varying standard deviation: (a) 2% coverage and (b) 10% coverage. The principal frequency
is shown.

Fig. 3 RAPS curves for a 25% patch halftoned by threshold matrices
using four different standard deviations. The principal frequency is
shown.
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lighter than 6%, which is also verified by Figs. 4(a) and 5(a).
Therefore, if a filter with a constant σ is being used and the
very light (and dark) tones are of importance, it is better to
use a bit larger σ, e.g., around 1.5.

3.2.3 Variable standard deviation

According to the results of the distance measures, σ ¼ 1.1
gave the optimal results on the tonal interval (0, 0.25],
but a bit larger σ up to 1.5 also resulted in fairy good half-
tones. Thus, a σ varying from 1.5 at 1% to 1.1 at 6% and then
constant will surely result in better halftones for very light
tones and almost the same halftones for other tones.
Recall that σ ¼ 1.1 corresponds to g ¼ 0.06 (6%) according
to Eq. (2). As already discussed in Sec. 3.2.1, if a variable
sigma is being used then it should not change over a large
interval. The question now is how large this interval can be
made. In order to figure it out, we changed the sigma on the
interval ½1.1; x�, x being the variable, and halftoned patches
from 1% to 25% with generated threshold matrices and cal-
culated the distance measures to find an optimal x.
According to the results, if x is around 1.7 the halftones
at 2% coverage and lighter are fairly good and much better
than using a constant σ ¼ 1.1. The halftones between 2%
and 6% are well formed and better than using a constant
sigma because in this range the correct sigma according
to Eq. (2) is used. For darker tones, the results are almost
as good as using a constant sigma.

Figures 4(b) and 4(d) show halftones at 2% and 10%
being halftoned with the threshold matrix generated with
a variable σ varying from 1.7 at 0.01 to 1.1 at 0.06 and
then equal to 1.1 for darker tones. The corresponding
RAPS curves for halftones shown in Figs. 4(b) and 4(d)

are shown in Fig. 5. As shown in Figs. 4(a), 4(b), and 5(a),
the halftone created by using a variable sigma shows a much
better blue-noise characteristic at 2%. By comparing the
images in Figs. 4(c) and 4(d) and the curves in Fig. 5(b),
it can be concluded that using variable sigma results in
almost the same well-formed halftone at 10% as using a con-
stant sigma. Note that here only the light tones were
explained because, for the sake of symmetry, the same var-
iable sigma is always used in the very dark tones. This means
that σ is 1.7 for lighter tones than 0.01 and varies from 1.7 at
0.01 to 1.1 at 0.06. After that σ is kept constant until 94%,
and then it is slowly increased to 1.7 at 99% and is kept con-
stant at 1.7 for darker tones.

3.3 Tiling Effect
In ordered dithering algorithms, a deterministic threshold
matrix is used for halftoning. The threshold matrix is
designed based on a number of factors such as print resolu-
tion (dpi), screen frequency (lpi), and halftone dot shape,
ordered dispersed or clustered dots, screen angle, etc. The
size of the threshold matrix is also directly related to the
number of gray levels being represented.2 The larger the
threshold matrix, the more gray levels it can represent.
For example, a 15 × 15 threshold matrix can represent up
to 226 gray levels. A screen at angles other than 0 or
90 deg requires slightly larger threshold matrices to repro-
duce the same number of gray levels. However, in ordered
dithering the size of the threshold matrix is much smaller
than the images being halftoned. Thus, the small threshold
matrices are repeated (or tiled) to make a larger matrix the
same size as the original image in order to be used in ordered
dithering. Then each pixel value in the image is compared

Fig. 4 Two halftones at 2% and 10% generated by a threshold matrix: (a), (c) with constant sigma ¼ 1.1
and (b), (d) with variable sigma.

Fig. 5 RAPS curves for halftones using a threshold matrix with constant and variable sigma: (a) 2%
coverage and (b) 10% coverage. The principal frequency is shown.
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with its corresponding threshold value in the larger threshold
matrix. Depending on the pixel value being greater or less
than the threshold, a 1 or 0 is put at that pixel position in
the output halftone image. Therefore, images halftoned by
such threshold matrices contain periodic structures because
of the tiling, most commonly seen in conventional AM half-
tones. In the proposed approach for generating a threshold
matrix, there is no constraint on the size of the threshold
matrix and it can be generated as large as possible to
avoid tiling. Since the matrix is designed once and can be
used thereafter independent of the image being halftoned,
the operating time for generating a large threshold matrix
is not an issue. However, there is a risk that a very large
threshold matrix would not be able to accurately reproduce
the tones and would also lose details in small regions of the
original image. In this section, we will first demonstrate what
would happen if identical threshold matrices are tiled to half-
tone a larger image by focusing on two important issues. The
first one is to study the blue-noise characteristic of the half-
tones after being thresholded by tiling a number of identical
threshold matrices. The second one is to study whether boun-
dary artifacts occur at the junctions between the tiled thresh-
old matrices.

In order to study the former issue, images of constant gray
levels were created and halftoned by a threshold matrix of the
same size and other threshold matrices built by tiling a num-
ber of identical smaller matrices. Then their RAPS curves
were studied to analyze their blue-noise characteristic.
Figure 6 shows a 256 × 256 image of constant gray level
0.1 being halftoned by threshold matrices with a size of
256 × 256, 128 × 128, 64 × 64, and 32 × 32. The RAPS
curves of the first three and the principal frequency
(

ffiffiffiffiffiffiffi
0.1

p ¼ 0.316) are also shown in Fig. 6.

By observing the patches and the RAPS curves in Fig. 6,
it is clearly seen that when the threshold matrix contains 4 ×
4 or more identical submatrices, the blue-noise characteris-
tics of the halftones are not preserved because of the periodic
structure caused by tiling. This can be verified by both look-
ing at the patches and also visually observing the oscillations
and the spikes in the RAPS curves. Hence, when halftoning
an image containing large homogeneous parts by the gener-
ated first-order FM threshold matrix, the best result would be
obtained if tiling of identical threshold matrices is avoided as
much as possible.

The other important issue is to study the presence of the
boundary artifacts. As explained in Sec. 3.1, in the genera-
tion of the threshold matrix, this issue was taken into account
when performing the feedback process. This was done by
utilizing the wrap-around strategy, i.e., subtracting the filter
values from the pixels on the mirror side of the found maxi-
mum if it was close to an edge or a corner. In order to study
the possible discontinuities, many tests have been done,
mostly by studying gray-scale ramps being halftoned. In
Fig. 6, one of these ramps is shown. The ramp is divided
into two parts, i.e., the upper part from 0% to 50% (left
to right) and the lower part from 50% to 100% (right to
left). Each part is filled by three rectangle tiles. No disconti-
nuity is observed in this image. This was also verified by
actual test prints at high resolutions using both offset at
1200 dpi and inkjet at 600 dpi. The conclusion is that the
transitions are very smooth and the tiling does not add
any discontinuities to the halftones.

As discussed earlier in this section, there is, however, a
risk that a large threshold matrix would miss small details
or/and would not be able to accurately reproduce the gray-
tones in small portions of an image. If there is a demand for

Fig. 6 Constant image at g ¼ 0.1 and gray-scale ramp halftoned by tiled threshold matrices.
(a) Threshold matrix is the same size as the image. (b) Thresholdmatrix consists of 2 × 2 smaller identical
matrices. (c) Threshold matrix consists of 4 × 4 smaller identical matrices. (d) Threshold matrix consists
of 8 × 8 smaller identical matrices. (e) The RAPS for three of the patches are shown. (f) The ramp is
shown in two parts and each part is filled by three rectangle tiles.
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not having the threshold matrix too large and at the same
time avoiding the tiling effect, the proposed approach can
be slightly modified to meet this demand. The tiling effect
and how to reduce it have been addressed in the litera-
ture.21,22 In Ref. 21, a new class tiling designed dot diffusion
was proposed to reduce the periodic artifacts by manipulat-
ing the class tiling with comprising rotation, transpose, and
alternative shifting of the class matrices. According to their
inspection, the source of the periodic artifacts in the dot dif-
fusion algorithm is its regular class matrix arrangement with
the same direction and relative positions. This is coped with
by replacing the regular arrangement with the conditional
random generated manner to design class tiling. Kacker
and Allebach showed that the random tiling of the screens
would eliminate the periodicity in the halftones.22 In
Ref. 22, the screens are designed using DBS halftoning
method and the screens are designed in such a way that
the boundary artifacts are prevented. The screens were
also trained using a database of high-resolution images to
improve halftone quality. Both approaches suggest a random
tiling to arrange the threshold matrices to reduce the periodic
artifacts. In the following, we propose two approaches suited
to the halftoning method in the present paper to randomly tile
the threshold matrices.

The first approach is very similar to what has been pro-
posed in Ref. 22, in which a number of threshold matrices are
randomly tiled to remove periodicity. The main concern is to
design the threshold matrices in a way that the boundary arti-
facts are prevented. Assume that K small threshold matrices
are being generated to be randomly tiled to make a large
threshold matrix. In the proposed approach, these K thresh-
old matrices are generated simultaneously as described in
Sec. 3.1. There are, therefore, 2K input matrices of pseudor-
andom numbers. In each iteration and for each of these K
threshold matrices, a threshold number is put in the position
where the maximum is found and the feedback process is
performed as explained in Sec. 3.1. The only difference
here is that if a maximum is found close to a border in
any of the threshold matrices, the parts of the filter outside
the matrix boundary are subtracted from its mirror side in all
of the K threshold matrices. For example, if a found maxi-
mum for a threshold matrix is close to the right edge, those
parts of the filter that are outside the right edge are subtracted
from the mirror side of it in the left edge of all of the K
threshold matrices. Note that since the border pixels in
each matrix are affected K times more than the inside pixels,

the filter values have to be divided by K when being sub-
tracted from the border pixels. This way all the K threshold
matrices can be randomly tiled from any direction without
causing any boundary artifacts. Figures 7(a) and 7(b)
show the RAPS curves for a 1024 × 1024 constant image
at 10% being halftoned by a 256 × 256 threshold matrix
and four 256 × 256 threshold matrices generated as proposed
and randomly tiled, respectively. This means that in the for-
mer case, only one 256 × 256 matrix and in the latter case
four 256 × 256 matrices need to be saved in the memory.
When using a 256 × 256 threshold matrix, identical matrices
are tiled to make a 1024 × 1024 matrix; therefore, the half-
tone is highly structured because exactly the same structure
is repeated 16 times. That is why the corresponding RAPS
curve does not represent a well-formed blue-noise character-
istic, see Fig. 7(a). The RAPS curve for the halftone using the
proposed random tiling approach, on the other hand, indi-
cates a better-formed halftone pattern as the oscillations
and the spikes are less evident in Fig. 7(b). If more threshold
matrices were generated and randomly tiled, the halftones
would certainly suffer less from periodical structure.

In the proposed second approach to reduce the tiling
effect, instead of using a predefined number of nonidentical
small threshold matrices and randomly tiling them, all of the
small threshold matrices making the large threshold matrix
are nonidentical. Let us explain the second approach by
using an example to generate a 1024 × 1024 threshold matrix
by 16 nonidentical 256 × 256matrices. Instead of generating
a 1024 × 1024 threshold matrix by filling the empty initial
matrix with numbers 1;2; : : : ; 10242, 16 256 × 256 threshold
matrices are generated simultaneously, filling each one with
numbers 1;2; : : : ; 2562. When all of these 256 × 256 matri-
ces are filled, they are tiled to be 1024 × 1024. The most suit-
able approach for doing that is to let the algorithm start with a
1024 × 1024 initial empty threshold matrix and two 1024 ×
1024 input images containing pseudorandom numbers pre-
cisely like before. Call these two images containing random
numbers M and N. Instead of searching for the maximum
over the entire 1024 × 1024 image, in this modification,
the maximum values at each of the 16 256 × 256 subimages
are found. Therefore, in the first iteration, 16 threshold num-
ber 1s are placed where the subimages inM hold their maxi-
mum values and 16 threshold number 2562 ¼ 65;536 are
placed where the subimages in N hold their maximums.
The feedback process is performed exactly like before.
This procedure continues until 16 2582∕2 ¼ 32;768 have

Fig. 7 RAPS curves for 1024 × 1024 halftones at 10% using: (a) a 256 × 256 threshold matrix, (b) four
nonidentical threshold matrices randomly tiled. The principal frequency is shown.
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been placed where the modified subimages in M hold their
maximum values and 16 32,769 have been placed where the
modified subimages in N have their maximum values. Now,
if a 1024 × 1024 image is halftoned with such a threshold
matrix, the periodic structure shown in Fig. 6 is significantly
reduced because the distribution of dots is different over each
256 × 256 portion from that of the other 256 × 256 portions
of the halftone. This means that the 1024 × 1024 threshold
matrix is tiled by 16 nonidentical 256 × 256 threshold matri-
ces in a randomized manner. The possible risk of losing
details in small parts of an image because of a too large
threshold matrix is also reduced. Figure 8 shows the
RAPS curves for a 1024 × 1024 constant image at 10%
being halftoned by a 1024 × 1024 threshold matrix, contain-
ing 16 256 × 256 nonidentical matrices, generated as pro-
posed. This RAPS curve indicates a well-formed halftone
pattern. Since, in this approach, 16 nonidentical matrices
are tiled, the periodicity is removed and the result is better
than using the first approach where four nonidentical matri-
ces were randomly tiled. This can be verified by comparing
the RAPS curve in Fig. 8 with that in Fig. 7(b). The disad-
vantage is that since in this example 16 nonidentical 256 ×
256 matrices are used, the memory requirement is four times
that required for the first approach.

Note that, in this example, if the image being halftoned is
larger than 1024 × 1024, the halftone pattern is still periodic
with a period of 1024 × 1024. However, although a 1024 ×
1024 screen is large enough to avoid the perception of perio-
dicity by repeated identical threshold matrices even at very
high print resolutions,22 it is possible to generate larger
threshold matrices with the same approach. For instance,
a 4096 × 4096 threshold matrix can be generated by 256
nonidentical 256 × 256 threshold matrices by the second
approach. The memory requirement will, of course, be
much higher.

A combination of the first and the second approach to
avoid tiling effect is also a possible alternative approach
to generate large threshold matrices consisting of many non-
identical and randomly tiled smaller threshold matrices.

Figures 7 and 8 show that the proposed methods are able
to remove or reduce periodicity and at the same time make

the threshold matrix contain smaller nonidentical submatri-
ces in order to avoid the possible loss of small details in a
large image.

4 Threshold Matrix Generation Second-Order FM
In this section, how to design the threshold matrix for a sec-
ond-order FM is described. Unlike the first-order FM where
the main goal was to produce well-formed halftones, in gen-
erating second-order FM halftones the main goal is to obtain
threshold matrices that fulfill the needs of the designer to
change the halftone structure, clustered dot size, shape,
and alignment by adjusting the filters and the involved
parameters.

4.1 Threshold Matrix Generation
The procedure for generating an image-independent thresh-
old matrix representing second-order FM is very similar to
that of generating a first-order FM threshold matrix
described in Sec. 3. The main difference between them is
the filter being used. In first-order FM, we wanted the single
dots to be as far apart as possible, while in the second-order,
in addition to that, we also want them to grow in size when
the tones get darker. The goal is, therefore, to fill the halftone
with separated single dots until a certain tone level and then
make them cluster and grow to a certain size. Thus, the func-
tion in Eq. (3), which is a Gaussian function subtracted from
another Gaussian function with a larger standard deviation, is
an appropriate filter for this purpose

hðm; nÞ ¼ e

−ðm2þn2Þ
2σ2

1 − e

−ðm2þn2Þ
2σ2

2 ; (3)

where σ1 > σ2. Figure 9(a) shows the radial one-dimensional
representation of hðm; nÞ, i.e., hðrÞ, versus the distance to the
center of the filter, i.e., the radius r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ n2

p
, for fixed

σ1 ¼ 3.3 and three different σ2: 0.7, 1.5, and 2.7. The maxi-
mum of hðrÞ occurs at p, marked in Fig. 9(a), for which we
have

p2 ¼
4σ21σ

2
2Ln

σ1
σ2

σ21 − σ22
: (4)

Figure 9(b) shows p2 versus σ2 for three different σ1: 1.3,
2.3, and 3.3. As shown in Fig. 9(b), p2 increases almost lin-
early with respect to σ2 for 0.5 < σ2 < σ1.

If the feedback process is performed using hðm; nÞ in
Eq. (3), the pixel values around the found maximum are
decreased with a radius decided by σ1. After the single
dots have been distributed, then the dots start to cluster
and the maximum size of the clustered dots will depend
on σ2 (or p). For example, using filters with σ1 ¼ 3.3 and
two σ2 ¼ 1.5 and σ2 ¼ 2.7 shown in Fig. 9(a) makes the
maximum radius of the clustered dots be around 3 and 4,
respectively, which means maximum clustered dot areas
of approximately 28 and 50. These numbers are, of course,
based on a rough estimate providing that all clustered dots
are the same size and are perfectly circular, which is neither
the case here nor the goal of second-order FM halftoning.
Perfectly circular clustered dots with the same size can be
achieved by an AM designed threshold matrix. However,
for a fixed σ1, a larger σ2 will make the clustered dots
grow faster and also reach a larger area. In Sec. 5, we

Fig. 8 RAPS curves for 1024 × 1024 halftones at 10% using a 1024 ×
1024 matrix consisting of 16 nonidentical 256 × 256 threshold matri-
ces generated by the second approach to avoid tiling effect. The prin-
cipal frequency is shown.
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show some halftones using the proposed threshold matrix for
second-order FM using fixed σ1 ¼ 3.3 and two different σ2.

4.2 Filter Design
As shown in Sec. 4.1, the generation of a threshold matrix is
very much dependent on the filter being used in the feedback
process. Therefore, in this section, how to design the filter is
discussed. The goal here is to discuss how appropriate
choices of σ1 and σ2 can be made to meet a specific demand
for the size of the clustered dots at a certain gray level.

4.2.1 Standard deviations of the filter

In order to have a better control over the filter size, let us
truncate the Gaussian filters where the holding weights
are less than 0.01, which is the maximum value in the
input random image. Therefore, for the Gaussian filter dis-
tributing the single dots Eq. (5), can be used to decide σ1

e
−1
2gσ2

1 ¼ 0.01; (5)

where g is the tonal value (gray level), see also Eq. (2).
Assume that we want the dots to start being clustered at
0.01. Putting g ¼ 0.01 in Eq. (5) gives σ1 ¼ 3.3. Now, if
we choose σ2 ¼ 1.5, as shown in Fig. 9(a), the clustered
dots will grow until their radius is around 3 (because p is
around 3). Choosing σ2 ¼ 2.7 will make the clustered
dots grow to a radius around 4. When the clustered dots

reach this radius, then more single dots will be placed in
empty spaces, which will then grow in size when the
tones get darker. Choosing appropriate σ1 and σ2 is, there-
fore, dependent on the application. A larger σ1, as discussed,
makes the dots cluster at lighter tones and a very small σ1
makes the halftone look like a first-order FM halftone.
When σ1 is decided, then a larger σ2 makes the clustered
dots grow faster and reach a larger area. A very small σ2
makes the halftone look like a first-order FM halftone.
Figures 10(a) and 10(b) show the average clustered dot
areas versus σ2 for three different σ1, i.e., 2.3, 2.7, and
3.3, for halftones at 10% and 25% coverage, respectively.
In all cases, σ2 was varied from 0.5 to 0.85 · σ1. The curves
were obtained by first labeling each binary halftone to local-
ize the separated clustered dots (connectivity 8 was used).
Then the dots at the borders that would have been connected
if the threshold matrix was repeated were also connected by
giving them the same label. After that the average clustered
dot area was simply calculated by taking the average of the
size of the labels.

The first observation is that the relationships within the
ranges they were calculated are linear, which was expected
because of the linear relationship between p2 and σ2 shown
in Fig. 9(b). Assume now, for instance, one wants to have an
average cluster dot size of 16 at 25%. Just to give an indi-
cation what this size at 25% means, consider an AM halftone
at 25% using 1200 dpi (print resolution) and 150 lpi (screen
frequency). This means a halftone cell of the size 8 × 8,

Fig. 9 (a) Filter hðr Þ for fixed σ1 ¼ 3.3 and three different σ2: 0.7, 1.5, and 2.7, (b) p2 in Eq. (4) versus σ2
for three different σ1: 1.3, 2.3, and 3.3.

Fig. 10 The average clustered dot areas versus σ2 for three different σ1, i.e., 2.3, 2.7, and 3.3 for half-
tones at: (a) 10% coverage and (b) 25% coverage.
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which for 25% will mean a halftone dot area of
0.25 × 64 ¼ 16. According to Fig. 10(b), among these
three plotted possibilities, there are two options; either
(σ1 ¼ 3.3 and σ2 ¼ 1.4) or (σ1 ¼ 2.7 and σ2 ¼ 1.84). For
σ1 ¼ 2.3, the clustered dot area does not reach 16 at 25%.
For (σ1 ¼ 3.3 and σ2 ¼ 1.4) and (σ1 ¼ 2.7 and
σ2 ¼ 1.84), the average clustered dot sizes at 10% are almost
7 and 6.7, respectively, see Fig. 10(a). A 10% AM halftone at
1200 dpi and 150 lpi means a halftone dot size of 6.4.
Figure 11 shows two halftones at 10% and 25% being half-
toned by the threshold matrix using (σ1 ¼ 3.3 and σ2 ¼ 1.4)
and (σ1 ¼ 2.7 and σ2 ¼ 1.84).

As expected, the halftones using these two different
options look quite similar. The main difference between
these two options is that for larger σ1 the dots start to cluster
at lighter tones and the dots are placed more homogeneously
for very light tones. As discussed earlier, according to
Eq. (5), for σ1 ¼ 3.3, the dots start making clusters at 1%
and for σ1 ¼ 2.7 at 1.5%, which is not a significant differ-
ence because the two σ1 are very close.

Figure 12 shows the RAPS curves for the two halftones in
Figs. 11(a) and 11(c), i.e., for σ1 ¼ 3.3 and σ2 ¼ 1.4. The
curves for the other two halftones are very similar and
are not displayed here. The halftones show a typical
green-noise characteristic. The principal frequencies are
also shown in Fig. 12. The principal frequencies were calcu-
lated using fg ¼

ffiffiffiffiffiffiffiffiffiffi
g∕M

p
for 0 < g ≤ 1∕2, where g is the gray

level and M is the size of the clusters.13 The principal
frequencies are thus, equal to fg ¼

ffiffiffiffiffiffiffiffiffiffiffi
0.1∕7

p ¼ 0.12 and
fg ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0.25∕16

p ¼ 0.125 for the two halftones shown in
Figs. 11(a) and 11(c), respectively.

4.2.2 Optimizing the filter

As discussed earlier, in a second-order FM, the choice of σ1
and σ2 is dependent on the application. Based on the size of
the clustered dots at a certain gray level and/or at what point
the dots start being clustered, one can choose an appropriate
pair of σ1 and σ2. If there are a number of choices resulting in
similar halftones with respect to the average dot size, like the
two choices in Sec. 4.2.1, then it could be of interest to com-
pare them with respect to other criteria. One of the criteria is
to calculate the area of all clustered dots and then compute
the standard deviation of the dot sizes for each patch. A
smaller standard deviation means that the clustered dots
are more homogeneous with respect to their area/size.
This is done by first labeling the halftones and then giving
the border dots that would have been connected if the

threshold matrices were tiled the same label. By finding
the size of each label, a set of dot sizes for each halftone
is found and its standard deviation is calculated. For the
two choices in Sec. 4.2.1, this standard deviation was calcu-
lated for halftones from 1% to 25%, and for all of them it was
smaller for (σ1 ¼ 2.7 and σ2 ¼ 1.9).

Another criterion is to figure out how homogeneously the
clustered dots are placed. A homogeneous distribution of
minority cluster pixels (center-to-center) characterizes the
green-noise characteristic of the halftones.13 We study this
characteristic by first applying a morphological operation
to shrink all clusters in the halftone to a center point and
then calculating how homogeneously the center points are
placed. The latter can be done the same way it was done
for the first-order FM discussed in Sec. 3.2.1 by calculating
a set of distances from a dot to its closest dot. The ratio of the
standard deviation of this set to its mean can be used as a
measure for homogeneousness. For the two choices in
Sec. 4.2.1, this ratio was calculated for halftones from 1%
to 25%, and for all of them it was smaller for (σ1 ¼ 2.7
and σ2 ¼ 1.9).

Therefore, when there are a number of options that fulfill
the demands of an application, if the very light tones are
important, choose the one with larger σ1 because it gives
more well-formed halftones for very light tones (and very
dark tones). Otherwise, study them by using the two criteria
discussed in this section and choose the one that produces

Fig. 11 Two halftones at 10% and 25% using a threshold matrix: (a), (c) σ1 ¼ 3.3 and σ2 ¼ 1.4, (b),
(d) σ1 ¼ 2.7 and σ2 ¼ 1.84.

Fig. 12 RAPS curves for two halftones at 10% and 25% using sec-
ond-order frequency modulated (FM) threshold matrix with σ1 ¼ 3.3
and σ2 ¼ 1.4. The principal frequencies are shown.

Journal of Electronic Imaging 023016-11 Mar∕Apr 2015 • Vol. 24(2)

Gooran and Kruse: High-speed first- and second-order frequency modulated halftoning

Downloaded From: http://electronicimaging.spiedigitallibrary.org/ on 07/08/2015 Terms of Use: http://spiedl.org/terms



more homogeneous halftones with regard to the dot size and/
or the distribution of the center points.

4.2.3 Variable sigma

As discussed in the previous sections by choosing appropri-
ate σ1 and σ2, the size of the clustered dots can be adjusted
for a specific gray level. When the pair σ1 and σ2 are chosen
to meet the demand for that specific gray level, the size of the
clustered dots at other gray levels will be dependent on this
choice and cannot be controlled. In this section, we will dis-
cuss the possibility of varying the standard deviations so that
the size of the clustered dots can be adjusted for more than
one gray level. Let us describe this with an example for an
application. For some printing technologies, such as flexog-
raphy, it is very crucial not to have the dots smaller than a
specific size, called the critical dot size, in order to be able to
correctly reproduce the highlights (and shadows).5 Assume
as an example that there is a need to have the dots at 4%
coverage not smaller than 3 × 3 in average, meaning a clus-
tered dot area of approximately 9 at 4%. To make this pos-
sible, σ1 must be quite large. The smallest possible σ1 in this
case is 4.4 with σ2 ¼ 3.7, see Fig. 13(a), dashed curve. Using
this combination will make the average area of the clustered
dots around 48 at 25%, see Fig. 13(a) solid curve. For an AM
halftone at 1200 dpi, this size corresponds to a screen fre-
quency around 50 lpi at 25%, which is very low. As
shown in Fig. 13(a), in order to have smaller clustered
dot size than 48 at 25%, σ2 has to be a variable of the
gray level, being 3.7 for tones lighter than 4% and then
decreasing. It is also possible to vary both σ1 and σ2, but
they give the same effect and result in very similar halftones.
Therefore, let us now only focus on keeping σ1 ¼ 4.4 fixed
and varying σ2 from 3.7 to a certain minimum value. What
this certain minimum value should be can be decided based
on the application and the wanted average size of the clus-
tered dots at, for example, 25%. For instance, if it is desirable
to have a size of 16 at 25%, then σ2 has to vary from 3.7 to
1.0, see Fig. 13(a) solid curve. Note that σ2 ¼ 1 corresponds
to an average cluster dot size of 16 at 25%, shown in
Fig. 13(a). This big change causes problems. In Fig. 13(b),
the average clustered dot area versus tonal value (gray level)
ranging from 0% to 25% is shown for three different choices
of varying σ2. For obtaining the dashed curve, σ2 was 3.7 up
to 4% and then was changed to 1.0. One observation is that

despite this sudden change it was not possible to get the aver-
age area of the clustered dots at 25% reduced to 16, so it is
around 20. Another observation is that between 4% and 10%,
the average dot size is less than that at 4%, which contradicts
the demand of the application that wanted the dot size larger
than 9 for tones darker than 4%. It can be concluded that this
demand of having the average dot area 9 at 4% and 16 at 25%
is not achievable. Therefore, there must be a trade-off
between these two demands. In Fig. 13(b), the dotted
curve shows the average dot area for a σ2 of 3.7 until 4%
and then gradually decreasing to reach 1.0 at 15%. As
seen, the demand of having an average area size of 9 at
4% is met, but the size at 25% is around 23.

The solid curve in Fig. 13(b) shows the average dot area
for a smoother variation of σ2, in which it was 3.7 up to 4%
and then gradually decreased to reach 1.0 at 20%. In this
case, the average area at 25% is around 29, but the change
in the clustered dot areas is smoother than in the other two
cases. From now on in this paper, when mentioning a var-
iable sigma for second-order FM we are referring to the latter
variation of σ2.

Figure 14 shows halftones at 4%, 10%, 25%, and 30%
halftoned by the generated threshold matrices for second-
order FM using different choices of σ2. In all cases, σ1 is
fixed at 4.4. In the upper and the middle row, σ2 ¼ 3.7
and σ2 ¼ 1.0 were used, respectively. In the lower row, a var-
iable σ2 was used. It can be seen, especially in the halftone at
10%, that a variable σ2 will make the patch less homo-
geneous in terms of the clustered dot area. This makes
sense, because using a large σ2 in very light tones makes
the dots grow very fast. Decreasing σ2 will force the average
dot area not to grow as fast for darker tones, which will make
the algorithm place smaller dots in empty spaces, which is
clearly seen in the 10% halftone. If a more homogeneous
halftone with respect to the clustered dot size is demanded,
then σ2 should vary more smoothly and should also decrease
to a larger value than 1.0. This way, the clustered dots will
have a more homogeneous size but the average dot size at
25% will be larger than 29.

4.3 Tiling Effect
The tiling discussed in Sec. 3.3 has almost the same effect on
second-order FM halftoning. Figure 15 (dashed curve)
shows the RAPS curve for a 1024 × 1024 halftone at 10%
using a 256 × 256 threshold matrix with σ1 ¼ 3.3 and

Fig. 13 (a) The average clustered dot areas versus σ2 using σ1 ¼ 4.4 for halftones at 4% and 25% cover-
age. (b) The average clustered dot area versus tonal value for three different variations of σ2.
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σ2 ¼ 1.4. The tiling effect is verified by visually noticing the
small oscillations and the spikes in this curve. The second
approach proposed in Sec. 3.3 is used to reduce the tiling
effect. The solid curve in Fig. 15 shows the RAPS curve
for the second-order FM halftone using the 1024 × 1024
threshold matrix generated by the second approach proposed
in Sec. 3.3. These two curves verify that the proposed ran-
dom tiling reduces the periodic artifacts.

4.4 Dot Shape and Alignment
So far we have shown and discussed how different choices of
σ1 and σ2 can change the clustered dot size and to some
extent the halftone structures. Here, we give a brief discus-
sion on how the shape of the clustered dots and their align-
ment can be changed by using appropriate filter/filters. The
filter used so far is the one shown in Eq. (3), which is a
Gaussian filter subtracted from another Gaussian filter. By
this choice, the clustered dots would symmetrically grow
in all directions. Using a nonsymmetrical filter and other
non-Gaussian filters can produce different halftone struc-
tures, dot shapes, and alignment. Let us keep the larger
Gaussian filter in Eq. (3) unchanged and illustrate how differ-
ent choices of the smaller filter can change the dot shape and
alignment. In order to make the dots grow faster in one direc-
tion, for example, the Y-direction, instead of using the filter
in Eq. (3) we can use the one shown in Eq. (6) using, e.g.,
k1 ¼ 1 and k2 > 1

f1ðm; nÞ ¼ e
−1
2σ2

1

ðm2þn2Þ
− e

−1
2σ2

3

�
m2

k1
þn2

k2

�
: (6)

By varying k1 and k2, it is possible to adjust how fast the
clustered dots grow in a specific direction. Figures 16(a)–
16(c) show a second-order halftone at 10% using
σ1 ¼ 3.3, σ3 ¼ 1.4, and k1 ¼ 1, with k2 ¼ 1 and k2 ¼ 2
and k2 ¼ 3, respectively. Note that k1 ¼ k2 ¼ 1 makes the
filter in Eq. (6) be the same as the one in Eq. (3). It is also
possible to make the dots grow faster in other directions by
rotating the filter in Eq. (6) by a specific angle. Figure 16(d)

Fig. 14 Halftones at 4%, 10%, 25%, and 30% halftoned by second-order FM threshold matrix: (up) σ1 ¼
4.4 and σ2 ¼ 3.7, (middle) σ1 ¼ 4.4 and σ2 ¼ 1.0, (down) σ1 ¼ 4.4 and variable σ2.

Fig. 15 RAPS curves for 1024 × 1024 halftones at 10% using 256 ×
256 second-order FM threshold matrix with σ1 ¼ 3.3 and σ2 ¼ 1.4 and
a 1024 × 1024 threshold matrix generated by the proposed modifica-
tion to reduce the tiling effect.
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shows the same halftone using the filter in Eq. (6) with k1 ¼ 1
and k2 ¼ 2 rotated clockwise by 45 deg.

Figures 17(a)–17(e) show gray-scale ramps halftoned
with a second-order FM threshold matrix using the filter
in Eq. (6) with a number of different σ1, σ3, k1, and k2 to

illustrate how different choices of the involved parameters
can affect the halftone structure, cluster dot shape, and
alignment.

It is also possible to achieve other halftone structures
and dot shapes by designing the filters differently. Here,

Fig. 16 Second-order halftone at 10% using the filter in Eq. (6) with σ1 ¼ 3.3, σ3 ¼ 1.4, and k1 ¼ 1:
(a) k2 ¼ 1, (b) k2 ¼ 2, (c) k2 ¼ 3, and (d) k2 ¼ 2 and the filter is rotated by 45 deg.

Fig. 17 Gray-scale ramp halftoned with the filter in Eq. (6) using the following parameters: (a) σ1 ¼ 3.3,
σ3 ¼ 1.4, k1 ¼ 1, and k2 ¼ 2.5, (b) σ1 ¼ 3.3, σ3 ¼ 1.4, k1 ¼ 1, and k2 ¼ 1.5, (c) σ1 ¼ 3.3,σ3 ¼ 1.4,
k1 ¼ 1, and k2 ¼ 1.5, rotated 30 deg, (d) σ1 ¼ 4.3, σ3 ¼ 1.4, k1 ¼ 1, and k2 ¼ 1.5, and (e) σ1 ¼ 4.3,
σ3 ¼ 1.4, k1 ¼ 1.5 and k2 ¼ 1.

Fig. 18 The filter in Eq. (7) using: (a) σ1 ¼ 3.0, σ3 ¼ 2.9, and l ¼ 2 and (b) σ1 ¼ 2.0, σ3 ¼ 1.9, and l ¼ 2.
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we illustrate another example using the filter shown in
Eq. (7):

f2ðm; nÞ ¼ e
−1
2σ2

1

ðm2þn2Þ
− gðm; nÞ; (7)

where

gðm; nÞ ¼
�
e

−1
2σ2

4

ðm2þn2Þ
; if jmj ≤ l or jnj ≤ l

0; otherwise
; (8)

where l, σ1, and σ4 are the variables. If σ4 is chosen to be
slightly smaller than σ1, the filter in Eq. (7) will produce
labyrinth/maze-like halftone structures. Figures 18(a) and

Fig. 19 The gray-scale ramp being halftoned using the filter in Eq. (7) with: (a) σ1 ¼ 3.0, σ3 ¼ 2.9, and
l ¼ 2, (b) σ1 ¼ 2.0, σ3 ¼ 1.9, and l ¼ 2, (c) σ1 ¼ 2.0, σ3 ¼ 1.9, and l ¼ 2, rotated 30 deg.

Fig. 20 The test images, a ramp, a regular image, and patches at 20%, 80%, 40%, and 60% are half-
toned by first-order FM generated threshold matrix using a variable sigma.
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18(b) show the filter in Eq. (7) using (σ1 ¼ 3.0, σ3 ¼ 2.9,
and l ¼ 2) and (σ1 ¼ 2.0, σ3 ¼ 1.9, and l ¼ 2), respectively.
Figures 19(a) and 19(b) show the gray-scale ramp being half-
toned by the threshold matrices generated using the filters in
Figures 18(a) and 18(b), respectively. Figure 19(c) shows the
halftone using the filter in Figure 18(b) being rotated
by 30 deg.

By changing the filters and/or adjusting the filter param-
eters, it is possible to achieve other halftone structures and
dot shapes that might be useful for some applications or artis-
tic reproductions.

5 Results
In order to study the results of the proposed approach to gen-
erate first-order and second-order FM threshold matrices, a
number of test images were halftoned. The chosen test
images are a gray-scale ramp, a regular image, and four
images of constant gray levels 20%, 40%, 60%, and 80%.
The gray-scale ramp is chosen to show how the generated
matrices operate in different tonal ranges and how smooth
the tonal transitions are. The regular image is chosen to
show how they halftone regular images. The constant images
are chosen to show the structures of the dots and how they

cluster and also show how symmetrical they are in distrib-
uting black dots and “white” pixels. That is why the pair
20%, 80% and the pair 40%, 60% were chosen.

Figure 20 shows the test images halftoned by the first-
order FM generated threshold matrix using a variable
sigma that was described in Sec. 3.2.3. It can be seen that
the dots are homogeneously placed in very light and dark
tones of the halftoned ramp and the regular image. The
tonal transitions are also very smooth, as is seen in the half-
toned ramp. It can also be noticed both in the ramp and the
constant images that the black dot and “white dot” distribu-
tions are symmetrical and similar in the two corresponding
sides of the midtone.

Figures 21 and 22 show the test images halftoned by the
second-order FM generated threshold matrix using Eq. (3)
with (σ1 ¼ 3.3, σ2 ¼ 0.5) and (σ1 ¼ 3.3, σ2 ¼ 1.0), respec-
tively. As discussed in Sec. 4, using a larger σ2 results in
bigger clustered dot areas, which are clearly seen by compar-
ing the halftones in Fig. 21 with those in Fig. 22. It can be
seen in both figures that the dots are homogeneously placed
in very light and dark tones of the halftoned ramp and the
regular image. The tonal transitions are very smooth in
both halftoned ramps. It can also be noticed both in the

Fig. 21 The test images, a ramp, a regular image, and patches at 20%, 80%, 40%, and 60% are half-
toned by second-order FM generated threshold matrix using σ1 ¼ 3.3 and σ2 ¼ 0.5.
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halftoned ramps and the constant images that the black dot
(clusters) and “white dot” shapes (voids) are symmetrical
and similar in the two corresponding sides of the midtone.

6 Color and Dot-off-Dot Halftoning
As discussed in Sec. 1, periodic clustered halftones usually
suffer from moiré. Second-order FM halftones provide a sol-
ution because of their stochastic nature of distributing the
clustered dots. In this section, we explain how the proposed
second-order FM halftoning can be used to halftone color
images and how it can be expanded to utilize dot-off-dot
structure.

Dot-off-dot structure means to avoid different colorant
dots being placed on top of each other if possible.
Therefore, if the sum of the coverages of the involved col-
orants is less than or equal to 100%, the dot overlap can be
completely avoided. The advantage of dot-off-dot structure is
that they produce smoother halftones and a larger gamut
while using less ink compared to the case where the colorants
are halftoned independently.18,20 Another advantage is that
the dot-off-dot screen is less sensitive to color shifts due
to misregistration between the colorant channels.18

Let us first focus on two colorants, e.g., cyan and
magenta. In the CMY print, the yellow channel is usually
halftoned independent of the other two because of its low
contrast.20 If identical threshold matrices are used for C
and M, i.e., Tm ¼ Tc, then the dots in C and M channels
will be placed precisely at the same positions producing a
dot-on-dot structure. If two different threshold matrices Tc

and Tm are generated and used for C and M, different col-
orant dots are placed independent of each other, although the
same filters and parameters are used to generate both matri-
ces. Furthermore, if one of the threshold matrices, e.g., Tc, is
generated and the other one calculated by Tm ¼ 1 − Tc, pro-
vided Tc is normalized between 0 and 1, then the overlap
between the two colorants will not occur as long as the
sum of their coverages does not exceed 100%. Note that
in the operation 1 − Tc, by 1 we mean a matrix of ones
the same size as Tc. Figures 23(a) and 23(b) show two iden-
tical ramps representing cyan and magenta being halftoned
according to the independent and dot-off-dot strategy
explained above. The filter in Eq. (3) with σ1 ¼ 3.3,
σ2 ¼ 1.0 has been used. In Fig. 23(b), dot-off-dot structures
are maintained up to 50% area coverage per colorant. If there
are three colorants involved, e.g., C, M, and Y, then in order

Fig. 22 The test images, a ramp, a regular image, and patches at 20%, 80%, 40%, and 60% are half-
toned by second-order FM generated threshold matrix using σ1 ¼ 3.3 and σ2 ¼ 1.0.
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to achieve a dot-off-dot structure we use Tm ¼ 1 − Tc and
Ty ¼ 2jð1∕2Þ − Tcj. Figure 23(c) shows three identical
ramps representing cyan, magenta, and yellow being half-
toned according to the dot-off-dot strategy discussed
above. The dot-off-dot structures are, therefore, maintained
up to 33% area coverage per colorant in this figure. Note
that in this dot-off-dot strategy, we only need to generate
one threshold matrix and the other two are found as
explained. The cyan, magenta, and yellow separations can
then be halftoned simultaneously by Tc, Tm, and Ty, respec-
tively, and the colorant values do not need to be processed as
a vector.

Although the proposed strategy guarantees dot-off-dot
structures, in the highlights and shadows the dots in different
channels are not necessarily placed as homogeneously as
possible. However, in the proposed method, it is also pos-
sible to simultaneously generate Tc, Tm, Ty, etc., in order
to both maintain dot-off-dot structure and make the dots
in different colorants be placed as homogeneously as pos-
sible. The approach would be similar to what has been intro-
duced in Ref. 20. The in-depth study of the latter approach is
beyond the scope of the present paper and will be introduced
in our future publications.

7 Conclusion
In this paper, we have proposed new methods to generate
first-order and second-order FM threshold matrices.
Utilizing threshold matrices makes the halftoning process
operate very quickly and makes the proposed method fea-
sible to be used in any printing application. It has been
explained how the in-built Gaussian filter can be designed
to generate well-formed first-order FM halftones. As it is
very important to be able to control the size and the
shape of the clusters in second-order FM halftones, our
method gives the users the possibility to adjust the halftone
structure, cluster dot size, shape, and alignment after
their need.

The proposed first-order FM method, which was verified
to produce well-formed halftones, can be used in print
devices that can stably print isolated dots. The proposed
second-order FM method can be used as an alternative
to periodic clustered-dot screens, in print devices that
cannot stably produce the isolated dots to overcome the
problem of visible moiré caused by periodic interference.

A dot-off-dot structure between three colorant channels
is also possible to produce by generating one threshold
matrix and calculating the other two matrices based on
the first one.
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