В зоне сжатия:

$$R_b(t) = \gamma_{Rb} R_b; \tag{3}$$

$$\gamma_{Rh} = 1 - \alpha_{Rh} \cdot \omega_h \cdot k_h. \tag{4}$$

В зоне растяжения:

$$R_{bt}(t) = \gamma_{Rbt} R_{bt}; \tag{5}$$

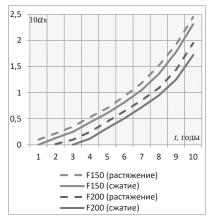
$$\gamma_{Rpac} = 1 - \alpha_{Rbt} \cdot \omega_{bt} \cdot k_{bt}, \tag{6}$$

где $\delta R_b(t)u\delta R_{bt}(t)$ — значения изменения прочности бетона соответственно при сжатии и растяжении в течение времени t; R_buR_{bt} — начальная прочность бетона соответственно при сжатии и растяжении; $\gamma_{Rb}u\gamma_{Rbt}$ — критерии прочности бетона соответственно при сжатии и растяжении; $\alpha_{Rb}u\alpha_{Rbt}$ — коэффициенты снижения прочности бетона в зонах сжатия и растяжения, в зависимости от продолжительности воздействия окружающей среды; $\omega_bu\omega_{bt}$ — коэффициенты, характеризующие снижение прочности бетона в зонах сжатия и растяжения, зависящие от напряженного состояния $\sigma_b/R_b(t)$.

На основании экспериментальных исследований получены графики коэффициентов снижения прочности бетона α_{Rb} и α_{Rbt} в зависимости от времени, которые представлены на рис. 1. Как видно из графиков коэффициентов снижения прочности, α_R в течение 5 лет в среднем уменьшаются в 1,5 раза, в течение 10 лет — в 3,0 раза. В зависимости от морозостойкости коэффициенты снижения прочности бетона во времени при F200 в течение 10 лет изменяются при сжатии $\alpha_{Rb}=0\div0,175$, а при растяжении $\alpha_{Rbt}=0\div0,20$. При F150 в течение 10 лет значение изменяется при сжатии $\alpha_{Rb}=0\div0,22$, а при растяжении — $\alpha_{Rbt}=0\div0,25$.

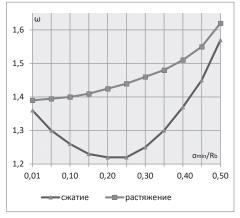
Предельное значение коэффициентов установлено:

$$\alpha_{Rb} = e^{\lambda_{Rb}(t-T_0)} - 1 \le \left[\alpha_{Rb}\right]. \tag{7}$$


1-я группа коэффициентов (снижение прочности в зоне сжатия и растяжения, в зависимости от продолжительности времени воздействия климатических условий):

при
$$F = 150 \quad [\alpha_{Rb}] = 0,220;$$

при $F = 200 \quad [\alpha_{Rb}] = 0,175.$


$$\alpha_{Rbt} = e^{\lambda_{Rbt}(t-T_0)} - 1 \le \left[\alpha_{Rbt}\right],\tag{8}$$

при F = 150
$$\left[\alpha_{\it Rbt}\right]$$
 = 0,250;
при F = 200 $\left[\alpha_{\it Rbt}\right]$ = 0,20.

В процессе повреждения бетона в условиях атмосферного воздействия достаточно важное влияние имеет напряженное состояние конструкций плиты, которое ускоряет развитие микротрещин, снижает сцепление между компонентами в структуре бетона. Трещины в бетоне развиваются по разным механизмам и оказывают доминирующее влияние на сниже-

Рис. 1. Графики коэффициентов снижения прочности бетона в зависимости от времени (годы) и морозостойкости (F)

Рис. 2. Зависимости коэффициентов (ω) снижения прочности бетона от напряженного состояния σ_b / R_b