- Сообщения
- 2 089
- Реакции
- 145
Zipf-like Distributions
As implicit in the introduction, and in contrast with continuous random variables, in the discrete case a power law in the probability mass function f(n) does not lead to a power law in the complementary cumulative distribution or survival function S(n), and vice-versa. Let us specify our definition for both functions, f(n) = Prob[frequency = n] (as usual), and S(n) = Prob[frequency ≥ n] (changing, for convenience, the usual strict inequality sign by the non-strict inequality). Then, the relation between both is f(n) = S(n) − S(n + 1) andWe consider that the values the random variable takes, given by n, are discrete, starting at the integer value a, taking values then n = a, a + 1, … up to infinity. In this study we will fix the parameter a to a = 1, in order to fit the whole distribution and not just the tail. Then, although for large n and smooth S(n) we may approximate f(n) ≃ −dS(n)/dn, this simplification is clearly wrong for small n. Note that the simplification leads to the implication that a power law in f(n) leads to a power law in S(n), and vice-versa, but this is clearly wrong for small values of n in discrete distributions. The simplification also lies in the equivalence between Eqs (1) and (2), assuming that S(n) is proportional to the rank and inverting Eq (1).
 
	 
 
		 Формулы ты знаешь
 Формулы ты знаешь 

 но проверить все равно надо....)))
 но проверить все равно надо....))) 
 
		
 
 
		